早教吧作业答案频道 -->数学-->
已知Asec(a)-Ctan(a)=d,Bsec(a)+Dtan(a)=c求证:(A^2)+(B^2)=(C^2)+(D^2)
题目详情
已知Asec(a)-Ctan(a)=d,Bsec(a)+Dtan(a)=c 求证:(A^2)+(B^2)=(C^2)+(D^2)
▼优质解答
答案和解析
令 x=sec(a), y=tan(a).
则 Ax -Cy = D, ①
Bx +Dy = C, ②
x^2 -y^2 = 1. ③
由 ① ② 解得
x = (C^2 +D^2) / (AD +BC),
y = (AC -BD) / (AD +BC).
其中 AD +BC ≠ 0.
代入 ③ 得
(C^2 +D^2)^2 -(AC -BD)^2 = (AD +BC) ^2.
即 0 = (C^2 +D^2) ^2 -[ (AC -BD)^2 +(AD +BC)^2 ]
= (C^2 +D^2)^2 -[ (A^2) (C^2) +(B^2) (D^2) +(A^2) (D^2) +(B^2) (C^2) ]
= (C^2 +D^2) ^2 - (A^2 +B^2) (C^2 +D^2)
= (C^2 +D^2) [ (C^2 +D^2) -(A^2 +B^2) ].
所以 C^2 +D^2 =0,
或 (A^2) +(B^2) = (C^2) +(D^2).
若 C^2 +D^2 =0,
则 C =D =0,
AD +BC =0,
与 AD +BC ≠ 0 矛盾.
综上, (A^2) +(B^2) = (C^2) +(D^2).
= = = = = = = = =
换元法+暴力破解.
暂时只想到这办法,计算可能有误.
则 Ax -Cy = D, ①
Bx +Dy = C, ②
x^2 -y^2 = 1. ③
由 ① ② 解得
x = (C^2 +D^2) / (AD +BC),
y = (AC -BD) / (AD +BC).
其中 AD +BC ≠ 0.
代入 ③ 得
(C^2 +D^2)^2 -(AC -BD)^2 = (AD +BC) ^2.
即 0 = (C^2 +D^2) ^2 -[ (AC -BD)^2 +(AD +BC)^2 ]
= (C^2 +D^2)^2 -[ (A^2) (C^2) +(B^2) (D^2) +(A^2) (D^2) +(B^2) (C^2) ]
= (C^2 +D^2) ^2 - (A^2 +B^2) (C^2 +D^2)
= (C^2 +D^2) [ (C^2 +D^2) -(A^2 +B^2) ].
所以 C^2 +D^2 =0,
或 (A^2) +(B^2) = (C^2) +(D^2).
若 C^2 +D^2 =0,
则 C =D =0,
AD +BC =0,
与 AD +BC ≠ 0 矛盾.
综上, (A^2) +(B^2) = (C^2) +(D^2).
= = = = = = = = =
换元法+暴力破解.
暂时只想到这办法,计算可能有误.
看了 已知Asec(a)-Ctan...的网友还看了以下:
设a=(√5-1)/2,求(a^5+a^4-2a^3-a^2-a+2)/a^3-a∵2a=√5-1 2020-04-05 …
设A={X/X^2+4X=0},B={X/X^2+2(a+1)X+a^2-1=0,a属于R}.(1 2020-04-06 …
若a加b分之a减b等于三,求代数式a加b分之2(a减b)减3(a减b)分之4(a加b)的值 请尽快 2020-05-16 …
已知圆C:x^2+(y-a)^2=4,点A(1,0),其中a是常数,当过点A的圆C的切线存在时(1 2020-06-09 …
椭圆C:x^2/a^2+y^2/b^2=1的离心率e=1/2,且过点P(1,3/2)1求椭圆C的方 2020-06-30 …
设集合A={x|x^2+4x=0,x属于R},B={x|x^2+2(a+1)x+a^2-1=0,x 2020-07-30 …
直线l:y=kx+1与椭圆C阿ax^2+y^2=2(a>1)交于A、B两点,以OA、OB为邻边作平 2020-07-31 …
基本不等式的使用问题a+b=1,求(a+2)^2+(b+2)^2的最小值.在这道题里,如果使用基本 2020-08-03 …
△ABC中,角A,B,C的对边分别为a,b,c,且a^2-(b-c)^2=(2-√3)bc,和sin 2020-10-30 …
1.已知y=√x-2-√2-x+5,求y/x的值2.已知√x-2y+1+√2x+y-1=0求x+y的 2020-11-01 …