早教吧作业答案频道 -->数学-->
不定积分问题∫√(1+t^2)dt=多少.
题目详情
不定积分问题
∫√(1+t^2) dt = 多少
.
∫√(1+t^2) dt = 多少
.
▼优质解答
答案和解析
令t=tan[x],
∫√(1+t^2) dt
= ∫sec[x]d(tan[x])
= sec[x]tan[x] - ∫tan[x]d(sec[x])
= sec[x]tan[x] - ∫tan[x](tan[x]sec[x])dx
= sec[x]tan[x] - ∫(sec[x]sec[x]-1)sec[x]dx
= sec[x]tan[x] - ∫sec[x]d(tan[x])dx + ∫sec[x]dx
所以∫sec[x]d(tan[x]) =1/2sec[x]tan[x]+ 1/2∫sec[x]dx
其中∫sec[x]dx = ∫sec[x]{sec[x]+tan[x]}/{sec[x]+tan[x]} dx
= ∫d{tan[x]+sec[x]}/{sec[x]+tan[x]}
= ln{sec[x]+tan[x]}
所以∫sec[x]d(tan[x]) =1/2sec[x]tan[x]+ 1/2ln{sec[x]+tan[x]} + C
代回得,
∫√(1+t^2) dt
= t√(1+t^2) /2 + 1/2ln{t+√(1+t^2) }+ C
∫√(1+t^2) dt
= ∫sec[x]d(tan[x])
= sec[x]tan[x] - ∫tan[x]d(sec[x])
= sec[x]tan[x] - ∫tan[x](tan[x]sec[x])dx
= sec[x]tan[x] - ∫(sec[x]sec[x]-1)sec[x]dx
= sec[x]tan[x] - ∫sec[x]d(tan[x])dx + ∫sec[x]dx
所以∫sec[x]d(tan[x]) =1/2sec[x]tan[x]+ 1/2∫sec[x]dx
其中∫sec[x]dx = ∫sec[x]{sec[x]+tan[x]}/{sec[x]+tan[x]} dx
= ∫d{tan[x]+sec[x]}/{sec[x]+tan[x]}
= ln{sec[x]+tan[x]}
所以∫sec[x]d(tan[x]) =1/2sec[x]tan[x]+ 1/2ln{sec[x]+tan[x]} + C
代回得,
∫√(1+t^2) dt
= t√(1+t^2) /2 + 1/2ln{t+√(1+t^2) }+ C
看了 不定积分问题∫√(1+t^2...的网友还看了以下:
a1=(1,-1,0),a2=(2,1,t),a3=(3,1,2)当t=多少.线性相关a1=(1, 2020-05-13 …
matlab解微分方程画图?function mat1()syms yt=0:0.1:1y=dso 2020-05-16 …
设a=(1/2,1/2,1/2,1/2)T次方,A=I-aa的T次方,B=I+2aa的T次方,其中 2020-05-23 …
已知f(x-1)=x^2-4x,求函数f(x),f(2x+1)的解析式令t=x-1,则有:x=t+ 2020-06-17 …
刘老师,您好。有种类型的题目一直没弄懂。是关于基的问题已知α1=(1,1,1)T,α2=(0,1, 2020-06-23 …
当x∈[0,4]求定积分∫1/(1+√x)dx设√x=t则t∈[0,2]dx=2tdt原式=2∫t 2020-07-23 …
用matlab求定积分的上限b的值定积分l=∫(x^2+y^2+z^2)^(1/2)*xd(t)上 2020-07-24 …
线性代数求解!设α1,α2,α3是四元非齐次线性方程组AX=b的3个解向量,且R(A)=3,α1= 2020-08-03 …
我的思路错在哪?y=((1/4)^x)-((1/2)^x)-2,求函数的值域及单调区间我的思路:y= 2020-12-21 …
已知α1=(1,0,1)Tα2=(0,1,1)Tα3=(1,3,5)T不能由β1=(1,1,1)T, 2020-12-23 …