早教吧作业答案频道 -->数学-->
如图1,正六边形ABCDEF的边长为a,P是BC边上一动点,过P作PM∥AB交AF于M,作PN∥CD交DE于N.(1)①∠MPN=;②求证:PM+PN=3a;(2)如图2,点O是AD的中点,连接OM、ON,求证:OM=ON;(3)如图3
题目详情
如图1,正六边形ABCDEF的边长为a,P是BC边上一动点,过P作PM∥AB交AF于M,作PN∥CD交DE于N.
(1)①∠MPN=______;
②求证:PM+PN=3a;
(2)如图2,点O是AD的中点,连接OM、ON,求证:OM=ON;
(3)如图3,点O是AD的中点,OG平分∠MON,判断四边形OMGN是否为特殊四边形?并说明理由.

(1)①∠MPN=______;
②求证:PM+PN=3a;
(2)如图2,点O是AD的中点,连接OM、ON,求证:OM=ON;
(3)如图3,点O是AD的中点,OG平分∠MON,判断四边形OMGN是否为特殊四边形?并说明理由.

▼优质解答
答案和解析
(1)①∵六边形ABCDEF是正六边形,
∴∠A=∠B=∠C=∠D=∠E=∠F=120°
又∴PM∥AB,PN∥CD,
∴∠BPM=60°,∠NPC=60°,
∴∠MPN=180°-∠BPM-∠NPC=180°-60°-60°=60°,
故答案为;60°.
②如图1,作AG⊥MP交MP于点G,BH⊥MP于点H,CL⊥PN于点L,DK⊥PN于点K,
MP+PN=MG+GH+HP+PL+LK+KN
∵正六边形ABCDEF中,PM∥AB,作PN∥CD,
∵∠AMG=∠BPH=∠CPL=∠DNK=60°,
∴GM=
AM,HP=
BP,PL=
PC,NK=
ND,
∵AM=BP,PC=DN,
∴MG+HP+PL+KN=a,GH=LK=a,
∴MP+PN=MG+GH+HP+PL+LK+KN=3a.

(2)如图2,连接OE,
∵六边形ABCDEF是正六边形,AB∥MP,PN∥DC,
∴AM=BP=EN,
∵∠MAO=∠OEN=60°,OA=OE,
在△ONE和△OMA中,
∴△OMA≌△ONE(SAS)
∴OM=ON.
(3)如图3,连接OE,
由(2)得,△OMA≌△ONE
∴∠MOA=∠EON,
∵EF∥AO,AF∥OE,
∴四边形AOEF是平行四边形,
∴∠AFE=∠AOE=120°,
∴∠MON=120°,
∴∠GON=60°,
∵∠GOE=60°-∠EON,∠DON=60°-∠EON,
∴∠GOE=∠DON,
∵OD=OE,∠ODN=∠OEG,
在△GOE和∠DON中,
∴△GOE≌△NOD(ASA),
∴ON=OG,
又∵∠GON=60°,
∴△ONG是等边三角形,
∴ON=NG,
又∵OM=ON,∠MOG=60°,
∴△MOG是等边三角形,
∴MG=GO=MO,
∴MO=ON=NG=MG,
∴四边形MONG是菱形.
∴∠A=∠B=∠C=∠D=∠E=∠F=120°
又∴PM∥AB,PN∥CD,
∴∠BPM=60°,∠NPC=60°,
∴∠MPN=180°-∠BPM-∠NPC=180°-60°-60°=60°,
故答案为;60°.
②如图1,作AG⊥MP交MP于点G,BH⊥MP于点H,CL⊥PN于点L,DK⊥PN于点K,
MP+PN=MG+GH+HP+PL+LK+KN
∵正六边形ABCDEF中,PM∥AB,作PN∥CD,
∵∠AMG=∠BPH=∠CPL=∠DNK=60°,
∴GM=
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
∵AM=BP,PC=DN,
∴MG+HP+PL+KN=a,GH=LK=a,
∴MP+PN=MG+GH+HP+PL+LK+KN=3a.

(2)如图2,连接OE,
∵六边形ABCDEF是正六边形,AB∥MP,PN∥DC,
∴AM=BP=EN,
∵∠MAO=∠OEN=60°,OA=OE,
在△ONE和△OMA中,
|
∴△OMA≌△ONE(SAS)
∴OM=ON.
(3)如图3,连接OE,
由(2)得,△OMA≌△ONE
∴∠MOA=∠EON,
∵EF∥AO,AF∥OE,
∴四边形AOEF是平行四边形,
∴∠AFE=∠AOE=120°,
∴∠MON=120°,
∴∠GON=60°,
∵∠GOE=60°-∠EON,∠DON=60°-∠EON,
∴∠GOE=∠DON,
∵OD=OE,∠ODN=∠OEG,
在△GOE和∠DON中,
|
∴△GOE≌△NOD(ASA),
∴ON=OG,
又∵∠GON=60°,
∴△ONG是等边三角形,
∴ON=NG,
又∵OM=ON,∠MOG=60°,
∴△MOG是等边三角形,
∴MG=GO=MO,
∴MO=ON=NG=MG,
∴四边形MONG是菱形.
看了 如图1,正六边形ABCDEF...的网友还看了以下:
物体从a点由静止出发做匀加速运动在做匀减速运动到达b点证明:前后两过程平均速度相等且等于全程的平均速 2020-03-31 …
探究过程;观察下列各式及其验证过程2倍根号三分之二等于根号下2+三分之二验证a倍根号下a的平方-1 2020-05-14 …
通过对库存现金进行监盘取得的证据属于: A.实物证据 B.视听证据 C.鉴定证据 D.环境证据 2020-05-21 …
下列关于函证的表述中,正确的有: A.函证可用于核实往来账目 B.函证的全过程必须由审计人员进 2020-05-21 …
●以下关于软件质量保证和质量评价的描述中,不正确的是(11)。(11)A.软件质量保证过程通过计划制 2020-05-26 …
身份认证是证实客户的真实身份与其所声称的身份是否相符的验证过程。目前,计算机及网络系统中常用的身份认 2020-05-26 …
初二几何求证过程急急急在三角形ABC中,CE垂直AB于E,BF垂直AC于F,连接EF,D是EF的中 2020-06-06 …
1.求证:对于给定的等边三角形,三角形内任意一点到三边的距离和为定值2.在∠B的两边上分别取点A, 2020-06-06 …
如图二在三角形abc中角acb等于九十度ac等于bcad是角ab三角形abc的中线过c作cf垂直a 2020-07-09 …
在四边形abcd中角dab等于角abc等于90度ad等于ab等于4,bc等于8,点n从a出发,沿a 2020-07-30 …