早教吧作业答案频道 -->其他-->
如图,直角坐标系中,点B(a,0),点C(0,b),点A在第一象限.若a,b满足(a-t)2+|b-t|=0(t>0).(1)证明:OB=OC;(2)如图1,连接AB,过A作AD⊥AB交y轴于D,在射线AD上截取AE=AB,连接CE
题目详情
如图,直角坐标系中,点B(a,0),点C(0,b),点A在第一象限.若a,b满足(a-t)2+|b-t|=0(t>0).
(1)证明:OB=OC;
(2)如图1,连接AB,过A作AD⊥AB交y轴于D,在射线AD上截取AE=AB,连接CE,F是CE的中点,连接AF,OA,当点A在第一象限内运动(AD不过点C)时,证明:∠OAF的大小不变;
(3)如图2,B′与B关于y轴对称,M在线段BC上,N在CB′的延长线上,且BM=NB′,连接MN交x轴于点T,过T作TQ⊥MN交y轴于点Q,求点Q的坐标.

(1)证明:OB=OC;
(2)如图1,连接AB,过A作AD⊥AB交y轴于D,在射线AD上截取AE=AB,连接CE,F是CE的中点,连接AF,OA,当点A在第一象限内运动(AD不过点C)时,证明:∠OAF的大小不变;
(3)如图2,B′与B关于y轴对称,M在线段BC上,N在CB′的延长线上,且BM=NB′,连接MN交x轴于点T,过T作TQ⊥MN交y轴于点Q,求点Q的坐标.

▼优质解答
答案和解析
(1)∵a,b满足(a-t)2+|b-t|=0(t>0).
∴a-t=0,b-t=0,
∴a=t,b=t,
∴a=b,
∵B(t,0),点C(0,t)
∴OB=OC;
(2)证明:延长AF至T,使TF=AF,连接TC,TO,
∵F为CE中点,
∴CF=EF,
在△TCF和△AEF中
∴△TCF≌△AEF(SAS),
∴CT=AE,∠TCF=∠AEF,
∴TC∥AD,
∴∠TCD=∠CDA,
∵AB=AE,
∴TC=AB,
∵AD⊥AB,OB⊥OC,
∴∠COB=∠BAD=90°,
∴∠ABO+∠ADO=180°,
∵∠ADO+∠ADC=180°,
∴∠ADC=∠ABO,
∵∠TCD=∠CDA,
∴∠TCD=∠ABO,
在△TCO和△ABO中
∴△TCO≌△ABO(SAS),
∴TO=AO,∠TOC=∠AOB,
∵∠AOB+∠AOC=90°,
∴∠TOC+∠AOC=90°,
∴△TAO为等腰直角三角形,
∴∠OAF=45°;
(3)连接MQ,NQ,BQ,B′Q,过M作MH∥CN交x轴于H,
∵B和B′关于y轴对称,C在y轴上,
∴CB=CB′,
∴∠CBB′=∠CB′B,
∵MH∥CN,
∴∠MHB=∠CB′B,
∴∠MHB=∠CBB′,
∴MH=BM,
∵BM=B′N,
∴MH=B′N,
∵MH∥CN,
∴∠NB′T=∠MHT,
∵在△NTB′和△MTH中

∴△NTB′≌△MTH(AAS),
∴TN=MT,又TQ⊥MN,
∴MQ=NQ,
∵CQ垂直平分BB′,
∴BQ=B′Q,
∵在△NQB′和△MQB中

∴a-t=0,b-t=0,
∴a=t,b=t,
∴a=b,
∵B(t,0),点C(0,t)
∴OB=OC;
(2)证明:延长AF至T,使TF=AF,连接TC,TO,
∵F为CE中点,
∴CF=EF,
在△TCF和△AEF中
|
∴△TCF≌△AEF(SAS),
∴CT=AE,∠TCF=∠AEF,
∴TC∥AD,
∴∠TCD=∠CDA,
∵AB=AE,
∴TC=AB,
∵AD⊥AB,OB⊥OC,
∴∠COB=∠BAD=90°,
∴∠ABO+∠ADO=180°,
∵∠ADO+∠ADC=180°,
∴∠ADC=∠ABO,
∵∠TCD=∠CDA,
∴∠TCD=∠ABO,
在△TCO和△ABO中
|
∴△TCO≌△ABO(SAS),
∴TO=AO,∠TOC=∠AOB,
∵∠AOB+∠AOC=90°,
∴∠TOC+∠AOC=90°,
∴△TAO为等腰直角三角形,
∴∠OAF=45°;
(3)连接MQ,NQ,BQ,B′Q,过M作MH∥CN交x轴于H,
∵B和B′关于y轴对称,C在y轴上,
∴CB=CB′,
∴∠CBB′=∠CB′B,
∵MH∥CN,
∴∠MHB=∠CB′B,
∴∠MHB=∠CBB′,
∴MH=BM,
∵BM=B′N,
∴MH=B′N,
∵MH∥CN,
∴∠NB′T=∠MHT,
∵在△NTB′和△MTH中
|

∴△NTB′≌△MTH(AAS),
∴TN=MT,又TQ⊥MN,
∴MQ=NQ,
∵CQ垂直平分BB′,
∴BQ=B′Q,
∵在△NQB′和△MQB中
|
看了 如图,直角坐标系中,点B(a...的网友还看了以下:
(2014•本溪)如图,直线y=x-4与x轴、y轴分别交于A、B两点,抛物线y=13x2+bx+c 2020-05-17 …
02对呼吸的调节途径主要是通过()A.直接刺激呼吸中枢B.直接兴奋延髓吸气神经元C.外周化学感受器所 2020-06-07 …
如图在平面直角坐标系中,直线l1:y=-12x+3与x轴交于点A,与y轴交于点B,直线l2:y=k 2020-06-14 …
双曲线y1=1x、y2=3x在第一象限的图象如图,过y2上的任意一点A,作x轴的平行线交y1于B, 2020-07-08 …
如图,点A(a,b)是双曲线y=8x(x>0)上的一点,点P是x轴负半轴上的一动点,AC⊥y轴于C 2020-07-16 …
(2014•抚州)如图,在平面直角坐标系中,⊙P经过x轴上一点C,与y轴分别相交于A、B两点,连接 2020-07-26 …
如图,在平面直角坐标系中,A(-3,0),点C在y轴的正半轴上,BC∥x轴,且BC=5,AB交y轴 2020-07-26 …
线不过坐标原点的原因a-F图线不过a轴原点的原因是:线不过F轴原点的原因是: 2020-08-02 …
如图,反比例函数y=kx(k≠0)的图象经过A,B两点,过点A作AC⊥x轴,垂足为C,过点B作BD 2020-08-03 …
(2012•武汉五月调考)如图,过A(2,-1)分别作y轴,x轴的平行线交双曲线y=kx于点B,点 2020-08-03 …