早教吧作业答案频道 -->数学-->
如图,△ABC中,∠ABC=45゜,D为BC上一点,CD=2BD,∠ADC=60゜.AE⊥BC于点E,CF⊥AD于点F,AE、CF相交于点G.(1)求证:△AFG≌△CFD;(2)若BC=3,AF=3,求线段EG的长.
题目详情
如图,△ABC中,∠ABC=45゜,D为BC上一点,CD=2BD,∠ADC=60゜.AE⊥BC于点E,CF⊥AD于点F,AE、CF相交于点G.

(1)求证:△AFG≌△CFD;
(2)若BC=3,AF=
,求线段EG的长.

(1)求证:△AFG≌△CFD;
(2)若BC=3,AF=
3 |
▼优质解答
答案和解析
(1)证明:连接BF,
∵CF⊥AD,
∴∠DFC=∠CFD=90°,
∵∠ADC=60°,
∴∠FCD=30°,
∴CD=2DF,
∵CD=2BD,
∴BD=DF,
∴∠DBF=∠DFB,
∵∠ADC=∠DFB+∠FBD=60°,
∴∠DFB=∠DBF=30°,
∵∠ABC=45°,
∴∠ABF=45°-30°=15°,
∵∠ABF+∠BAF=∠BFD=30°,
∴∠FAB=15°,
即∠BAF=∠ABF,
∴BF=AF,
∵∠FBC=∠FCB=30°,
∴BF=CF,
∵AE⊥BC,
∴∠AED=90°,
∵∠ADC=60°,
∴∠FAG=30°=∠DCF,
在△AFG和△CFD中
∴△AFG≌△CFD(ASA).
(2)∵BC=3,CD=2BD,
∴BD=1,CD=2,
∵DF=BD,
∴DF=1,
∴在Rt△CFD中,由勾股定理得:CF=
=
,
∵△AFG≌△CFD,
∴DF=FG=1,
∴CG=
-1,
在Rt△CEG中,∠GEC=90°,∠GCE=30°,
∴EG=
CG=
.

∵CF⊥AD,
∴∠DFC=∠CFD=90°,
∵∠ADC=60°,
∴∠FCD=30°,
∴CD=2DF,
∵CD=2BD,
∴BD=DF,
∴∠DBF=∠DFB,
∵∠ADC=∠DFB+∠FBD=60°,
∴∠DFB=∠DBF=30°,
∵∠ABC=45°,
∴∠ABF=45°-30°=15°,
∵∠ABF+∠BAF=∠BFD=30°,
∴∠FAB=15°,
即∠BAF=∠ABF,
∴BF=AF,
∵∠FBC=∠FCB=30°,
∴BF=CF,
∵AE⊥BC,
∴∠AED=90°,
∵∠ADC=60°,
∴∠FAG=30°=∠DCF,
在△AFG和△CFD中
|
∴△AFG≌△CFD(ASA).
(2)∵BC=3,CD=2BD,
∴BD=1,CD=2,
∵DF=BD,
∴DF=1,
∴在Rt△CFD中,由勾股定理得:CF=
22−12 |
3 |
∵△AFG≌△CFD,
∴DF=FG=1,
∴CG=
3 |
在Rt△CEG中,∠GEC=90°,∠GCE=30°,
∴EG=
1 |
2 |
| ||
2 |
看了 如图,△ABC中,∠ABC=...的网友还看了以下:
请大神来做一道中值证明题f(x)在[0,a]上连续,在(0,a)内可导,且f(a)等于0,证明存在 2020-06-14 …
椭圆X2/4+Y2/3=1上有一动点,圆E:(x-i)^2+y^2=1,过圆心E任意做一条直线与圆 2020-07-26 …
椭圆X2/4+Y2/3=1上有一动点,圆E:(x-i)^2+y^2=1,过圆心E任意做一条直线与圆 2020-07-26 …
已知函数f(x)=(a+lnx)除以x(a属于R)若a=4求曲线F(X)在点(e,f(e)处的切线 2020-07-27 …
已知抛物线E:y2=2px(p>0)的焦点为F,过F且垂直于x轴的直线与抛物线E交于A,B两点,E 2020-07-31 …
如图,已知抛物线与x轴相交于A,B两点,与y轴相交于点C(0,-3),且顶点D的坐标为(1,-4) 2020-08-01 …
E(-4,2)F(-1,1),以原点0为位似中心,按比例尺1:2把△EFO缩小,点E的对应点E`的 2020-08-02 …
导数题已知函数f(x)=(x^2+mx+5)e^x,x属于全体实数.1.若函数没有极值点,求m的范围 2020-11-17 …
已知文法G:(1)E→E+T|T(2)T→T*F|F(3)F→P↑F|P(4)P→(E)|i1.已知 2020-12-07 …
已知f(x)=e的x次方-e的负x次方;(1)证明f(x)的导函数大于等于2;(2)当x大于等于0时 2020-12-08 …