早教吧作业答案频道 -->数学-->
阅读理解如图1,△ABC中,沿∠BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C的平分线A1B2折叠,剪掉重复部分;…;将余下部分沿∠BnAnC的平分线AnBn+1折叠,点Bn与点C重合,无论折
题目详情
阅读理解
如图1,△ABC中,沿∠BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C的平分线A1B2折叠,剪掉重复部分;…;将余下部分沿∠BnAnC的平分线AnBn+1折叠,点Bn与点C重合,无论折叠多少次,只要最后一次恰好重合,∠BAC是△ABC的好角.
小丽展示了确定∠BAC是△ABC的好角的两种情形.情形一:如图2,沿等腰三角形ABC顶角∠BAC的平分线AB1折叠,点B与点C重合;情形二:如图3,沿∠BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C的平分线A1B2折叠,此时点B1与点C重合.
探究发现

(1)△ABC中,∠B=2∠C,经过两次折叠,∠BAC是不是△ABC的好角?______(填“是”或“不是”).
(2)小丽经过三次折叠发现了∠BAC是△ABC的好角,请探究∠B与∠C(不妨设∠B>∠C)之间的等量关系.根据以上内容猜想:若经过n次折叠∠BAC是△ABC的好角,则∠B与∠C(不妨设∠B>∠C)之间的等量关系为______.
应用提升
(3)小丽找到一个三角形,三个角分别为15°、60°、105°,发现60°和105°的两个角都是此三角形的好角.
请你完成,如果一个三角形的最小角是4°,试求出三角形另外两个角的度数,使该三角形的三个角均是此三角形的好角.
如图1,△ABC中,沿∠BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C的平分线A1B2折叠,剪掉重复部分;…;将余下部分沿∠BnAnC的平分线AnBn+1折叠,点Bn与点C重合,无论折叠多少次,只要最后一次恰好重合,∠BAC是△ABC的好角.
小丽展示了确定∠BAC是△ABC的好角的两种情形.情形一:如图2,沿等腰三角形ABC顶角∠BAC的平分线AB1折叠,点B与点C重合;情形二:如图3,沿∠BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C的平分线A1B2折叠,此时点B1与点C重合.
探究发现

(1)△ABC中,∠B=2∠C,经过两次折叠,∠BAC是不是△ABC的好角?______(填“是”或“不是”).
(2)小丽经过三次折叠发现了∠BAC是△ABC的好角,请探究∠B与∠C(不妨设∠B>∠C)之间的等量关系.根据以上内容猜想:若经过n次折叠∠BAC是△ABC的好角,则∠B与∠C(不妨设∠B>∠C)之间的等量关系为______.
应用提升
(3)小丽找到一个三角形,三个角分别为15°、60°、105°,发现60°和105°的两个角都是此三角形的好角.
请你完成,如果一个三角形的最小角是4°,试求出三角形另外两个角的度数,使该三角形的三个角均是此三角形的好角.
▼优质解答
答案和解析
(1)△ABC中,∠B=2∠C,经过两次折叠,∠BAC是△ABC的好角;
理由如下:小丽展示的情形二中,如图3,
∵沿∠BAC的平分线AB1折叠,
∴∠B=∠AA1B1;
又∵将余下部分沿∠B1A1C的平分线A1B2折叠,此时点B1与点C重合,
∴∠A1B1C=∠C;
∵∠AA1B1=∠C+∠A1B1C(外角定理),
∴∠B=2∠C,∠BAC是△ABC的好角.
故答案是:是;
(2)∠B=3∠C;如图所示,在△ABC中,沿∠BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C的平分线A1B2折叠,剪掉重复部分,将余下部分沿∠B2A2C的平分线A2B3折叠,点B2与点C重合,则∠BAC是△ABC的好角.
证明如下:∵根据折叠的性质知,∠B=∠AA1B1,∠C=∠A2B2C,∠A1 B1C=∠A1A2B2,
∴根据三角形的外角定理知,∠A1A2B2=∠C+∠A2B2C=2∠C;
∵根据四边形的外角定理知,∠BAC+∠B+∠AA1B1-∠A1 B1C=∠BAC+2∠B-2∠C=180°,
根据三角形ABC的内角和定理知,∠BAC+∠B+∠C=180°,
∴∠B=3∠C;
由小丽展示的情形一知,当∠B=∠C时,∠BAC是△ABC的好角;
由小丽展示的情形二知,当∠B=2∠C时,∠BAC是△ABC的好角;
由小丽展示的情形三知,当∠B=3∠C时,∠BAC是△ABC的好角;
故若经过n次折叠∠BAC是△ABC的好角,则∠B与∠C(不妨设∠B>∠C)之间的等量关系为∠B=n∠C;
(3)由(2)知设∠A=4°,∵∠C是好角,∴∠B=4n°;
∵∠A是好角,∴∠C=m∠B=4mn°,其中m、n为正整数得4+4n+4mn=180
∴如果一个三角形的最小角是4°,三角形另外两个角的度数是4、172;8、168;16、160;44、132;88°、88°.
理由如下:小丽展示的情形二中,如图3,
∵沿∠BAC的平分线AB1折叠,
∴∠B=∠AA1B1;
又∵将余下部分沿∠B1A1C的平分线A1B2折叠,此时点B1与点C重合,
∴∠A1B1C=∠C;
∵∠AA1B1=∠C+∠A1B1C(外角定理),
∴∠B=2∠C,∠BAC是△ABC的好角.
故答案是:是;

(2)∠B=3∠C;如图所示,在△ABC中,沿∠BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C的平分线A1B2折叠,剪掉重复部分,将余下部分沿∠B2A2C的平分线A2B3折叠,点B2与点C重合,则∠BAC是△ABC的好角.
证明如下:∵根据折叠的性质知,∠B=∠AA1B1,∠C=∠A2B2C,∠A1 B1C=∠A1A2B2,
∴根据三角形的外角定理知,∠A1A2B2=∠C+∠A2B2C=2∠C;
∵根据四边形的外角定理知,∠BAC+∠B+∠AA1B1-∠A1 B1C=∠BAC+2∠B-2∠C=180°,
根据三角形ABC的内角和定理知,∠BAC+∠B+∠C=180°,
∴∠B=3∠C;
由小丽展示的情形一知,当∠B=∠C时,∠BAC是△ABC的好角;
由小丽展示的情形二知,当∠B=2∠C时,∠BAC是△ABC的好角;
由小丽展示的情形三知,当∠B=3∠C时,∠BAC是△ABC的好角;
故若经过n次折叠∠BAC是△ABC的好角,则∠B与∠C(不妨设∠B>∠C)之间的等量关系为∠B=n∠C;
(3)由(2)知设∠A=4°,∵∠C是好角,∴∠B=4n°;
∵∠A是好角,∴∠C=m∠B=4mn°,其中m、n为正整数得4+4n+4mn=180
∴如果一个三角形的最小角是4°,三角形另外两个角的度数是4、172;8、168;16、160;44、132;88°、88°.
看了 阅读理解如图1,△ABC中,...的网友还看了以下:
1.已知△ABC,三边的边长分别为a,b,c, 且a+b+c=4,ab=1,c2=14,试判断△AB 2020-03-30 …
若|m-3|=-(y-2)²,则x+y=()A.5B.1C.-5D.-1若|m+3|+(n-2)² 2020-06-03 …
如果2x-b<1与2x+b>1的解集没有公共部分,求b的取值范围.(题目意思我都没明白,A、B两地 2020-06-03 …
y=2x+1与ykx+b相交与(1,a)(1)求a的值.(2)写出y=2x+1与y=kx+b的方程 2020-06-06 …
1.与a-b的积是35的数是2.将面积为a的平方的小正方形与面积为b的平方的大正方形放在一起(b> 2020-06-11 …
若|a+b+1|与(a-b+1)的平方互为相反数,求3a+2b-1的值? 2020-06-15 …
试在闭区间0,1与a,b间建立两个双射试在闭区间0,1与a,b(a 2020-07-16 …
已知m,x,y满足条件:(1)2/3(x-5)²+5*(m的绝对值)=0;(2)-2a²b^(y+ 2020-08-01 …
设双曲线x²/a²-y²/b²=1与y²/b²-x²/a²=1的离心率分别为e1,e2,则当a,b变 2020-10-31 …
1.与“如果我们也能像水滴一样,还有什么事情做不成呢?”表述方法不同的句子是()A:让逢蒙这样的人吃 2020-11-22 …