早教吧作业答案频道 -->数学-->
已知点A(a,0),点B(0,b)(a,b均大于4,直线AB与圆C:x^2+y^2-4x-4y+4=0相切.求(a-4)(b-4)的值,求线段AB中点M的轨迹方程求三角形AOM的面积S的最小值.
题目详情
已知点A(a,0),点B(0,b)(a,b均大于4,直线AB与圆C:x^2+y^2-4x-4y+4=0相切.
求(a-4)(b-4)的值,求线段AB中点M的轨迹方程 求三角形AOM的面积S的最小值.
求(a-4)(b-4)的值,求线段AB中点M的轨迹方程 求三角形AOM的面积S的最小值.
▼优质解答
答案和解析
1.直线AB 的方程为x/a+y/b=1,即bx+ay-ab=0
圆C的方程化为(x-2)^2+(y-2)^2=2^2
圆心为(2,2),半径为2
圆心到直线的距离=2
即|2b+2a-ab|/√(a^2+b^2)=2
|2b+2a-ab|=2√(a^2+b^2)
两边平方,化简ab+8-4a-4b=0
即:(a-4)(b-4)=8
2.设中点的坐标为(x’,y’)
则x’=(a+0)/2=a/2 x’>0
y’=(b+0)/2=b/2 y’>0
即a=2x’ b=2y’
代入(a-4)(b-4)=8中
(2x’-4)(2y’-4)=8
得中点轨迹为(x-2)(y-2)=4 (x>0,y>0)
3.三角形AOB的面积S=1/2ab
由(a-4)(b-4)=8,得a=(4b-8)/(b-4)
S=1/2b(4b-8)/(b-4)
2b^2-(4+S)b+4S=0
方程有实根,Δ≥0
(4+S)^2-32S≥0
(S-12)^2≥128
S-12≥8√2或S-12≤-8√2
S≥12+8√2或S≤12-8√2(小于圆的面积,不符题意,舍去)
∴S(min)=12+8√2
圆C的方程化为(x-2)^2+(y-2)^2=2^2
圆心为(2,2),半径为2
圆心到直线的距离=2
即|2b+2a-ab|/√(a^2+b^2)=2
|2b+2a-ab|=2√(a^2+b^2)
两边平方,化简ab+8-4a-4b=0
即:(a-4)(b-4)=8
2.设中点的坐标为(x’,y’)
则x’=(a+0)/2=a/2 x’>0
y’=(b+0)/2=b/2 y’>0
即a=2x’ b=2y’
代入(a-4)(b-4)=8中
(2x’-4)(2y’-4)=8
得中点轨迹为(x-2)(y-2)=4 (x>0,y>0)
3.三角形AOB的面积S=1/2ab
由(a-4)(b-4)=8,得a=(4b-8)/(b-4)
S=1/2b(4b-8)/(b-4)
2b^2-(4+S)b+4S=0
方程有实根,Δ≥0
(4+S)^2-32S≥0
(S-12)^2≥128
S-12≥8√2或S-12≤-8√2
S≥12+8√2或S≤12-8√2(小于圆的面积,不符题意,舍去)
∴S(min)=12+8√2
看了 已知点A(a,0),点B(0...的网友还看了以下:
几道关于初中有理数的题会几个填几个1a不等于0,a的相反数的倒数是什么,a的倒数的相反数有是什么. 2020-05-14 …
已知:抛物线y=ax²+bx+c经过点O(0,0)A(7,4),且对称轴l与x轴交于点B(5,0) 2020-05-16 …
关于方程x4-2ax2-x+a2-a=0(a≥3/4)为什么可以将a示为未知数?解得a1(角码)= 2020-05-20 …
诺a/2=2b,a和b≠0,a/b=4对吗? 2020-06-29 …
1.已知a+b+c=0,a^2+b^2+c^=1,求:①ab+bc+ac的值②a^4+b^4+c^ 2020-07-09 …
在△abc中,∠C=90°,∠a,∠b,∠c的对边为a,b,c.求(1)已知a=3.25,∠a=3 2020-07-09 …
设双曲线x²/a²-y²/b²=1与y²/b²-x²/a²=1的离心率分别为e1,e2,则当a,b变 2020-10-31 …
设F1(-4,0),A(1,4),p是双曲线x?/4-y?/16=1右支上的一动点.则PF1+PA的 2020-12-31 …
已知:如图,抛物线y=ax^2-2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于A,B,点A 2021-01-10 …
①已知/a/=4,/b/=3且a>b的值②已知/a+b/=0,/a-1/2/=0求a-b的值?什么答 2021-01-13 …