早教吧作业答案频道 -->数学-->
已知2次函数f(x)=ax2+bx对任意x属于R均有f(x-4)=f(2-x)成立,且函数的图像过点A(1,3/2).(1)求函数y=f(x)的解析式;(2)若不等式f(x-t)≤x的解集为〔4,m〕,求实数t、m的值.
题目详情
已知2次函数f(x)=ax2+bx对任意x属于R均有f(x-4)=f(2-x)成立,且函数的图像过点
A(1,3/2).
(1) 求函数y=f(x)的解析式;
(2) 若不等式f(x-t)≤x的解集为〔4,m〕,求实数t、m的值.
A(1,3/2).
(1) 求函数y=f(x)的解析式;
(2) 若不等式f(x-t)≤x的解集为〔4,m〕,求实数t、m的值.
▼优质解答
答案和解析
(1)
f(x-4)=a(x-4)²+b(x-4)=ax²-8ax+16a+bx-4b=ax²+(b-8a)x+16a-4b
f(2-x)=a(2-x)²+b(2-x)=ax²-4ax+4a+2b-bx =ax²-(4a+b)x+4a+2b
则 b-8a=-4a-b → 4a=2b → 2a=b ①
16a-4b=4a+2b → 12a=6b → 2a=b ②
把A(1,3/2)带入函数f(x)=ax²+bx,得 a+b=3/2 ③
根据①②③,解得 a=1/2 b=1
函数y=f(x)的解析式为f(x)=1/2x²+x
(2)
f(x-t)≤x
1/2(x-t)²+(x-t)≤x
1/2x²-tx+1/2t²+x-t≤x
1/2x²-tx+1/2t²-t≤0
根据题意可得 1/2*4²-4t+1/2t²+4-t=0 → 1/2t²-5t+8=0 → t²-10t+16=0 ①
1/2*m²-mt+1/2t²-t=0 → m²-2mt+t²-2t=0 ②
解①,(t-2)(t-8)=0,则t=2或8
把t=2带入②得,m²-4m=0 → m(m-4)=0 → m=4或0,都不符合要求,故舍去.
把t=8带入②得,m²-16m+48=0 → (m-12)(m-4)=0 → m=4或12,舍去4.
所以 t=8,m=12.
f(x-4)=a(x-4)²+b(x-4)=ax²-8ax+16a+bx-4b=ax²+(b-8a)x+16a-4b
f(2-x)=a(2-x)²+b(2-x)=ax²-4ax+4a+2b-bx =ax²-(4a+b)x+4a+2b
则 b-8a=-4a-b → 4a=2b → 2a=b ①
16a-4b=4a+2b → 12a=6b → 2a=b ②
把A(1,3/2)带入函数f(x)=ax²+bx,得 a+b=3/2 ③
根据①②③,解得 a=1/2 b=1
函数y=f(x)的解析式为f(x)=1/2x²+x
(2)
f(x-t)≤x
1/2(x-t)²+(x-t)≤x
1/2x²-tx+1/2t²+x-t≤x
1/2x²-tx+1/2t²-t≤0
根据题意可得 1/2*4²-4t+1/2t²+4-t=0 → 1/2t²-5t+8=0 → t²-10t+16=0 ①
1/2*m²-mt+1/2t²-t=0 → m²-2mt+t²-2t=0 ②
解①,(t-2)(t-8)=0,则t=2或8
把t=2带入②得,m²-4m=0 → m(m-4)=0 → m=4或0,都不符合要求,故舍去.
把t=8带入②得,m²-16m+48=0 → (m-12)(m-4)=0 → m=4或12,舍去4.
所以 t=8,m=12.
看了 已知2次函数f(x)=ax2...的网友还看了以下:
已知函数定义域为R,若存在常数m>0,对任意x∈R,有|f(x)|≤m|x|则称其为F函数,则f( 2020-04-27 …
已知全集U=R,M={x丨y=根号下x-1},P={x丨y=log1/2x,y属于M},下列各式正 2020-06-06 …
M、R都是生活中常见的金属单质,其中R是用量最多的金属.甲、乙是化合物,其中甲是黑色晶体,可由R在 2020-06-06 …
1.设集合A={x丨x≤4},m=sin30°,则下列关系中正确的是()2.设全集是实数R,M={ 2020-06-14 …
设全集U={(x,y)│x∈R,y∈R},M={(x,y)│y-3/x-2=1},P={(x,y) 2020-07-13 …
下列选项中的M和P表示同一集合的是()A.M=(x属于R丨x²+0.01=0),P=(x丨x²=0 2020-07-30 …
已知全集.已知全集U=R,M={X|X小于0或X大于1},N{X|X-1/X小于0},则M与N的交 2020-07-30 …
1.设全集U=R,M={x|x大于等于1},N={x|0小于等于x小于5},则(CuM)∪(CuN 2020-07-30 …
集合A={0,2,a},B={1,a²}…….集合A={0,2,a},B={1,a²},若A∪B= 2020-07-30 …
设全集I=R,M={x|lg(x^2-2)=lgx},N={x|√x+1≤2},则(M的补集)与N 2020-07-30 …