早教吧作业答案频道 -->数学-->
设du(x,y)=(x+2y)dx+(2x+y)dy,求u(x,y)
题目详情
设du(x,y)=(x+2y)dx+(2x+y)dy,求u(x,y)
▼优质解答
答案和解析
分项组合
du(x,y)=(x+2y)dx+(2x+y)dy
=xdx+ydy+2(xdy+ydx)
=d(1/2×x^2)+d(1/2×y^2)+2d(xy)
=d(1/2×x^2+1/2×y^2+2xy)
所以,u(x,y)=1/2×x^2+1/2×y^2+2xy+C
du(x,y)=(x+2y)dx+(2x+y)dy
=xdx+ydy+2(xdy+ydx)
=d(1/2×x^2)+d(1/2×y^2)+2d(xy)
=d(1/2×x^2+1/2×y^2+2xy)
所以,u(x,y)=1/2×x^2+1/2×y^2+2xy+C
看了 设du(x,y)=(x+2y...的网友还看了以下:
设函数Q(x,y)在平面xOy上具有一阶连续偏导数,曲线积分∫L2xydx+Q(x,y)dy与路径 2020-06-11 …
已知x/y+z+u=y/z+u+x=z/u+x+y=u/x+y+z,求(y+x/z+u)+(y+z 2020-06-12 …
交换二次积分的积分次序∫0−1dy∫21−yf(x,y)dx=∫21dx∫01−xf(x,y)dy 2020-06-12 …
xu-yv=0,yu+xv=1方程两边分别对x求导xu-yv=0,yu+xv=1方程两边分别对x求 2020-07-13 …
求Z=xe^(x+y)+(1+x)ln(1+y)全微分为什么d[xe^(x+y)+ln(1+y)= 2020-07-21 …
设xy+lny+lnx=1,求dy/dx│x=1x=1则y+lny+0=1y+lny=1所以y=1 2020-07-21 …
设函数f(x)在区间[0,1]上连续,并设∫10f(x)dx=A,求∫10dx∫1x∫f(x)f(y 2020-10-31 …
设f(x,y)是连续函数,则二次积分∫10dy∫yyf(x,y)dx交换积分次序后为∫10dx∫xx 2020-12-05 …
交换二次积分的积分次序:∫0−1dy∫1−y2f(x,y)dx=∫21dx∫1−x0f(x,y)dy 2020-12-05 …
设f(x,y)为连续函数,则二次积分∫10dy∫1yf(x,y)dx交换积分次序后为∫10dx∫x2 2020-12-05 …