早教吧作业答案频道 -->数学-->
如题.已知x+y+z=3,且(x-1)^3+(y-1)^3+(z-1)^3=0,求证:x,y,z中至少有一个为1.注意是求证x,y,z中至少有一个为1
题目详情
如题.
已知x+y+z=3,且(x-1)^3+(y-1)^3+(z-1)^3=0,求证:x,y,z中至少有一个为1.
注意是求证x,y,z中至少有一个为1
已知x+y+z=3,且(x-1)^3+(y-1)^3+(z-1)^3=0,求证:x,y,z中至少有一个为1.
注意是求证x,y,z中至少有一个为1
▼优质解答
答案和解析
方法1
证明:由x+y+z=3可知(x-1)+(y-1)+(z-1)=0.
∴(x-1)3+(y-1)3+(z-1)3=3(x-1)(y-1)(z-1)=0
∴ x=1或y=1或z=1
即x、y、z中至少有一个等于1.
方法2
根据题目的意思 (x-1)+(y-1)+(z-1) = 0 设 a=x-1,b=y-x,c=z-1 所以 a+b+c=0 a^3+b^3+c^3=0 所以 a+b=-c a^3+b^3+c^3=(a+b)(a^2-ab+b^2)+c^3 =-c*(a^2-ab+b^2)+c^3 =c*(c^2-a^2-b^2+ab) =c*[(a+b)^2-a^2-b^2+ab] =3abc 所以 3abc=0 显然,a、b、c中必然有一个为0
证明:由x+y+z=3可知(x-1)+(y-1)+(z-1)=0.
∴(x-1)3+(y-1)3+(z-1)3=3(x-1)(y-1)(z-1)=0
∴ x=1或y=1或z=1
即x、y、z中至少有一个等于1.
方法2
根据题目的意思 (x-1)+(y-1)+(z-1) = 0 设 a=x-1,b=y-x,c=z-1 所以 a+b+c=0 a^3+b^3+c^3=0 所以 a+b=-c a^3+b^3+c^3=(a+b)(a^2-ab+b^2)+c^3 =-c*(a^2-ab+b^2)+c^3 =c*(c^2-a^2-b^2+ab) =c*[(a+b)^2-a^2-b^2+ab] =3abc 所以 3abc=0 显然,a、b、c中必然有一个为0
看了 如题.已知x+y+z=3,且...的网友还看了以下:
已知x,y,z满足y+z/x=z+x/y=x+y/z=k,求k的值我只知道一个,∵y+z/x=z+ 2020-04-26 …
已知x+y分之一=4,y+z分之一=1,z+x分之一=7分之3,求xyz如题,我是七年级的学生.T 2020-05-13 …
已知y+z-x/x+y+z=z+x-y/y+z-x=x+y-z/z+x-y=p,请写出一组符合条件 2020-06-03 …
如何快速得到使二元一次方程为最大值时的解(X,Y)值二元方程:Z(X,Y)=7XY+X+Y,注意: 2020-07-25 …
若x/(y+z+t)=y/(z+t+x)=z/(t+x+y)=t/(x+y+z)即f=(x+y)/( 2020-10-30 …
一道初二数学题,急!设a=x/y+z,b=y/x+z,c=z/x+y,且x+y+z不等于0.求代数式 2020-10-31 …
若实数X,Y,Z满足x+y分之一=4,Y+Z分之一=1,z+X分之一=3分之7,求XYZ 2020-11-01 …
(a+b+c)/3大于等于3*√abc设a=x^3,b=y^3,c=z^3x,y,z是非负数时x^3 2020-11-01 …
设:1/x-1+1/y-1+1/z-1=1/x+y+z-3求证:x+y,y+z,z+x中至少有一个等 2020-11-01 …
有理数X.Y.Z互不相等且X+1/Y=Y+1/Z=Z+1/X,求证XYZ的平方等于一有理数X.Y.Z 2020-11-07 …