早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2014•闵行区二模)已知:如图①,△ABC中,AI、BI分别平分∠BAC、∠ABC.CE是△ABC的外角∠ACD的平分线,交BI延长线于E,联结CI.(1)设∠BAC=2α.如果用α表示∠BIC和∠E,那么∠BIC=,

题目详情
(2014•闵行区二模)已知:如图①,△ABC中,AI、BI分别平分∠BAC、∠ABC.CE是△ABC的外角∠ACD的平分线,交BI延长线于E,联结CI.
(1)设∠BAC=2α.如果用α表示∠BIC和∠E,那么∠BIC=______,∠E=______;
(2)如果AB=1,且△ABC与△ICE相似时,求线段AC的长;
(3)如图②,延长AI交EC延长线于F,如果∠α=30°,sin∠F=
3
5
,设BC=m,试用m的代数式表示BE.
▼优质解答
答案和解析
(1)在△BCE中有:∠E=180°-∠BCE-∠CBE,
又∵AI、BI分别平分∠BAC,
∴CI是∠ACB的平分线,
∵CE是∠ACD的平分线,
∴∠ECI是平角∠BCD的一半,
∴∠ECI=90°,
∴∠E=90°-∠BCI-∠CBI,
在△ABC中,
1
2
∠BAC=
1
2
(180°-∠ABC-∠ACB)=90°-∠BCI-∠CBE=α,即∠E=α.
在三角形BIC中,由外角性质得到:∠BIC=90°+α,
综上所述,∠BIC=90°+α,∠E=α.
故填:90°+α,α;

(2)由题意易证得△ICE是直角三角形,且∠E=α.
当△ABC∽△ICE时,可得△ABC是直角三角形,有下列三种情况:
①当∠ABC=90° 时,∵∠BAC=2α,∠E=α;
∴只能∠E=∠BCA,可得∠BAC=2∠BCA.
∴∠BAC=60°,∠BCA=30°.
∴AC=2 AB.
∵AB=1,
∴AC=2.
②当∠BCA=90° 时,
∵∠BAC=2α,∠E=α;
∴只能∠E=∠ABC,可得∠BAC=2∠ABC.
∴∠BAC=60°,∠ABC=30°.
∴AB=2 AC.
∵AB=1,
∴AC=
1
2

③当∠BAC=90° 时,∵∠BAC=2α,∠E=α;
∴∠E=∠BAI=∠CAI=45°.
∴△ABC是等腰直角三角形.即 AC=AB.
∵AB=1,
∴AC=1.
∴综上所述,当△ABC∽△ICE时,线段AC的长为1或2或
1
2


(3)∵∠E=∠CAI,由三角形内角和可得∠AIE=∠ACE.
∴∠AIB=∠ACF.
又∵∠BAI=∠CAI,
∴∠ABI=∠F.
又∵BI平分∠ABC,
∴∠ABI=∠F=∠EBC.
又∵∠E是公共角,
∴△EBC∽△EFI.
在Rt△ICF中,sin∠F=
3
5
,设IC=3k,那么CF=4k,IF=5k.
在Rt△ICE中,∠E=30°,设IC=3k,那么CE=3
3
k,IE=6k.
∵△EBC∽△EFI.
BC
BE
=
IF
FE
=
5k
4k+3
3
k

又∵BC=m,
∴BE=
4+3
3
5
m.