早教吧作业答案频道 -->数学-->
在正方形ABCD中,点E为直线BC上一点,连接AE,过点E作EF⊥AE交直线AB于点M,交直线CD于点F.(1)当点E在线段BC上时,如图①,求证:BE=BM+CF;(提示:过点C作CN∥FM交直线AB的于点N)(2)当
题目详情
在正方形ABCD中,点E为直线BC上一点,连接AE,过点E作EF⊥AE交直线AB于点M,交直线CD于点F.
(1)当点E在线段BC上时,如图①,求证:BE=BM+CF;(提示:过点C作CN∥FM交直线AB的于点N)
(2)当点E在线段BC的延长线上时,如图②;当点E在线段CB的延长线上时,如图③;线段BE、BM、CF之间又有怎样的数量关系?请直接写出你的猜想,不需要证明;
(3)若S正方形ABCD=324,sin∠FEC=
,则MB=___,CF=___.

(1)当点E在线段BC上时,如图①,求证:BE=BM+CF;(提示:过点C作CN∥FM交直线AB的于点N)
(2)当点E在线段BC的延长线上时,如图②;当点E在线段CB的延长线上时,如图③;线段BE、BM、CF之间又有怎样的数量关系?请直接写出你的猜想,不需要证明;
(3)若S正方形ABCD=324,sin∠FEC=
4 |
5 |

▼优质解答
答案和解析
(1)证明:过点F作FH⊥AB于H,交AE于G,如图1所示:
则四边形FHBC为矩形,
∴FH=BC=AB,CF=HB,
∵正方形ABCD,AE⊥FM,
∴∠ABC=∠AEF=90°,
∵∠AGH=∠FGE,
∴∠EAB=∠HFM,
在△ABE和△FHM中,
,
∴△ABE≌△FHM(ASA),
∴HM=BE,
∴BE=BM+CF;
(2) ①当点E在线段BC的延长线上时,BE=BM-CF,理由如下:
过点F作FH⊥AM于H,如图2所示:
则四边形FHBC为矩形,
∴FH=BC=AB,CF=BH,
∵正方形ABCD,AE⊥FM,
∴∠ABE=∠AEM=∠FHM=90°,
∵∠MFH=∠MEB,
∴∠EAB=∠HFM,
在△ABE和△FHM中,
,
∴△ABE≌△FHM(ASA),
∴HM=BE,
∵HM=BM-BH=BM-CF,
∴BE=BM-CF;
②当点E在线段CB的延长线上时,BE=CF-BM,理由如下:
过点M作MH⊥DF于H,如图3所示:
则四边形BCHM为矩形,
∴MH=BC=AB,CH=BM,
∵正方形ABCD,AE⊥FM,
∴∠ABE=∠AEF=∠FHM=90°,
∵∠FMH=∠MEB,
∴∠EAB=∠FMH,
在△ABE和△FHM中,
,
∴△ABE≌△FHM(ASA),
∴HF=BE,
∵HF=CF-CH=CF-BM,
∴BE=CF-BM;
(3) ∵S正方形ABCD=324,
∴正方形ABCD的边长为18;
分三种情况讨论:
①当点E在线段BC上时,
∵∠BAE+∠ABE=90°,∠FEC+∠ABE=90°,
∴∠BAE=∠FEC,
∴sin∠BAE=sin∠FEC=
,
∴tan∠BAE=
=
,
∴BE=24,
∵BE<AB,
∴BE<18,
∴不合题意;
②当点E在线段BC的延长线上时,
同①得出:BE=24,
∴CE=24-18=6,
∴CF=
CE=
×6=8,
∴MB=BE+CF=24+8=32;
③当点E在线段CB的延长线上时,
同①得出:BE=24,
∵tan∠FEC=
=
,
∴MB=
BE=

则四边形FHBC为矩形,
∴FH=BC=AB,CF=HB,
∵正方形ABCD,AE⊥FM,
∴∠ABC=∠AEF=90°,
∵∠AGH=∠FGE,
∴∠EAB=∠HFM,
在△ABE和△FHM中,
|
∴△ABE≌△FHM(ASA),
∴HM=BE,
∴BE=BM+CF;
(2) ①当点E在线段BC的延长线上时,BE=BM-CF,理由如下:

过点F作FH⊥AM于H,如图2所示:
则四边形FHBC为矩形,
∴FH=BC=AB,CF=BH,
∵正方形ABCD,AE⊥FM,
∴∠ABE=∠AEM=∠FHM=90°,
∵∠MFH=∠MEB,
∴∠EAB=∠HFM,
在△ABE和△FHM中,
|
∴△ABE≌△FHM(ASA),
∴HM=BE,
∵HM=BM-BH=BM-CF,
∴BE=BM-CF;
②当点E在线段CB的延长线上时,BE=CF-BM,理由如下:
过点M作MH⊥DF于H,如图3所示:

则四边形BCHM为矩形,
∴MH=BC=AB,CH=BM,
∵正方形ABCD,AE⊥FM,
∴∠ABE=∠AEF=∠FHM=90°,
∵∠FMH=∠MEB,
∴∠EAB=∠FMH,
在△ABE和△FHM中,
|
∴△ABE≌△FHM(ASA),
∴HF=BE,
∵HF=CF-CH=CF-BM,
∴BE=CF-BM;
(3) ∵S正方形ABCD=324,
∴正方形ABCD的边长为18;
分三种情况讨论:
①当点E在线段BC上时,
∵∠BAE+∠ABE=90°,∠FEC+∠ABE=90°,
∴∠BAE=∠FEC,
∴sin∠BAE=sin∠FEC=
4 |
5 |
∴tan∠BAE=
BE |
AB |
4 |
3 |
∴BE=24,
∵BE<AB,
∴BE<18,
∴不合题意;
②当点E在线段BC的延长线上时,
同①得出:BE=24,
∴CE=24-18=6,
∴CF=
4 |
3 |
4 |
3 |
∴MB=BE+CF=24+8=32;
③当点E在线段CB的延长线上时,
同①得出:BE=24,
∵tan∠FEC=
BM |
BE |
4 |
3 |
∴MB=
4 |
3 |
|
看了 在正方形ABCD中,点E为直...的网友还看了以下:
在等边三角形ABC中,D为线段BC上的动点,连接AD,在角ADC内作角ADE等于60度,交AC边于 2020-05-13 …
如图,在□ABCD中,过点C作CE⊥CD交AD于点E,将线段EC绕点E逆时针旋转90°得到线段EF 2020-05-13 …
在等腰梯形ABCD中,AD‖BC,E为AB的中点,过点E作EF‖BC交CD于点F.AB=4,BC= 2020-05-16 …
在等腰三角形△ABC(C为顶点)中,CH是底边上的高线,点P是线段CH上不与端点重和的任意一点,连 2020-06-05 …
如图已知点abcde在同一直线上,且AC等于BD,E是线段BC的中点.(1)点e是如图已知点abc 2020-06-15 …
如图,在△ABC中,AD平分∠BAC,P为线段AD上一个动点,PE⊥AD交直线BC于点E①若∠B= 2020-06-27 …
如图1,正方形ABCD中,点P为线段BC上一个动点,若线段MN垂直AP于点E,交线段AB于M,CD 2020-07-20 …
如图,在直角三角形ABC中,∠ABC=90°,∠C=30°,AB=4,D是AC边上的一个动点,过点 2020-07-29 …
在平行四边形ABCD中,过点C作CE⊥CD交AD于点E,将线段EC绕点E逆时针旋转90°得到线段EF 2021-01-15 …
在正方形ABCD中,点E在线段BC上(点E不与点B、C重合),连接AE,过点E作AE的垂直交直线DC 2021-01-15 …