早教吧 育儿知识 作业答案 考试题库 百科 知识分享

在正方形ABCD中,点E为直线BC上一点,连接AE,过点E作EF⊥AE交直线AB于点M,交直线CD于点F.(1)当点E在线段BC上时,如图①,求证:BE=BM+CF;(提示:过点C作CN∥FM交直线AB的于点N)(2)当

题目详情
在正方形ABCD中,点E为直线BC上一点,连接AE,过点E作EF⊥AE交直线AB于点M,交直线CD于点F.
(1)当点E在线段BC上时,如图①,求证:BE=BM+CF;(提示:过点C作CN∥FM交直线AB的于点N)
(2)当点E在线段BC的延长线上时,如图②;当点E在线段CB的延长线上时,如图③;线段BE、BM、CF之间又有怎样的数量关系?请直接写出你的猜想,不需要证明;
(3)若S正方形ABCD=324,sin∠FEC=
4
5
,则MB=___,CF=___.
作业搜
▼优质解答
答案和解析
(1)证明:过点F作FH⊥AB于H,交AE于G,如图1所示:作业搜
则四边形FHBC为矩形,
∴FH=BC=AB,CF=HB,
∵正方形ABCD,AE⊥FM,
∴∠ABC=∠AEF=90°,
∵∠AGH=∠FGE,
∴∠EAB=∠HFM,
在△ABE和△FHM中,
∠EAB=∠HFM
AB=FH
∠ABE=∠FHM

∴△ABE≌△FHM(ASA),
∴HM=BE,
∴BE=BM+CF;
(2) ①当点E在线段BC的延长线上时,BE=BM-CF,理由如下:作业搜
过点F作FH⊥AM于H,如图2所示:
则四边形FHBC为矩形,
∴FH=BC=AB,CF=BH,
∵正方形ABCD,AE⊥FM,
∴∠ABE=∠AEM=∠FHM=90°,
∵∠MFH=∠MEB,
∴∠EAB=∠HFM,
在△ABE和△FHM中,
∠EAB=∠HFM
AB=FH
∠ABE=∠FHM

∴△ABE≌△FHM(ASA),
∴HM=BE,
∵HM=BM-BH=BM-CF,
∴BE=BM-CF;
②当点E在线段CB的延长线上时,BE=CF-BM,理由如下:
过点M作MH⊥DF于H,如图3所示:作业搜
则四边形BCHM为矩形,
∴MH=BC=AB,CH=BM,
∵正方形ABCD,AE⊥FM,
∴∠ABE=∠AEF=∠FHM=90°,
∵∠FMH=∠MEB,
∴∠EAB=∠FMH,
在△ABE和△FHM中,
∠EAB=∠HFM
AB=FH
∠ABE=∠FHM

∴△ABE≌△FHM(ASA),
∴HF=BE,
∵HF=CF-CH=CF-BM,
∴BE=CF-BM;
(3) ∵S正方形ABCD=324,
∴正方形ABCD的边长为18;
分三种情况讨论:
①当点E在线段BC上时,
∵∠BAE+∠ABE=90°,∠FEC+∠ABE=90°,
∴∠BAE=∠FEC,
∴sin∠BAE=sin∠FEC=
4
5

∴tan∠BAE=
BE
AB
=
4
3

∴BE=24,
∵BE<AB,
∴BE<18,
∴不合题意;
②当点E在线段BC的延长线上时,
同①得出:BE=24,
∴CE=24-18=6,
∴CF=
4
3
CE=
4
3
×6=8,
∴MB=BE+CF=24+8=32;
③当点E在线段CB的延长线上时,
同①得出:BE=24,
∵tan∠FEC=
BM
BE
=
4
3

∴MB=
4
3
BE=
首页    语文    数学    英语    物理    化学    历史    政治    生物    其他     
Copyright © 2019 zaojiaoba.cn All Rights Reserved 版权所有 作业搜 
本站资料来自网友投稿及互联网,如有侵犯你的权益,请联系我们:105754049@qq.com
湘ICP备12012010号