早教吧作业答案频道 -->数学-->
数列题!f(x,y)对所有实数x,y都满足:f(0,y)=y+1,f(x+1,0)=f(x,1),f(x+1,y+1)=f[x,f(x+1,y)](3)若bn=f(3,n)+3求证bn也是等比数列(4)求f(3,2008)
题目详情
数列题!f(x,y)对所有实数x,y都满足:f(0,y)=y+1,f(x+1,0)=f(x,1),f(x+1,y+1)=f[x,f(x+1,y)]
(3)若bn=f(3,n)+3求证bn也是等比数列
(4)求f(3,2008)
(3)若bn=f(3,n)+3求证bn也是等比数列
(4)求f(3,2008)
▼优质解答
答案和解析
(3)令x=0则f(1,0)=f(0,1)=1+1=2 再令x=0,y=0的f(1,1)=f[0,f(1,0)]=f(1,0)+1=3
令x=0,y=n得f(1,n+1)=f[0,f(1,n)=f(1,n)+1 则{f(1,n)}是首项为f(1,1)=3公差为1的等差数列
故f(1,n)=3+n-1=n+2
则f(2,0)=f(1,1)=3 则f(2,1)=f[1,f(2,0)]=f(2,0)+2=5
再令x=1,y=n得f(2,n+1)=f[1,f(2,n)=f(2,n)+2 则{f(1,n)}是首项为f(2,1)=5公差为2的等差数列
故f(2,n)=5+2(n-2)=2n+3
再令x=2,y=n得f(3,n+1)=f[2,f(3,n)=2f(3,n)+3
即f(3,n+1)=2f(3,n)+3
故b(n+1)=f(3,n+1)+3=2f(3,n)+3+3=2[f(3,n)+3]=2bn
故{bn}是首项为f(3,1)+3=f[2,f(3,0)]=2f(3,0)+3=2f(2,1)+3=13公比为2的等比数列
(4)由(3)的bn=13*2^(n-1) 则f(3,n)=bn-3=13*2^(n-1) -3
故f(3,2008)=13*2^2007-3
令x=0,y=n得f(1,n+1)=f[0,f(1,n)=f(1,n)+1 则{f(1,n)}是首项为f(1,1)=3公差为1的等差数列
故f(1,n)=3+n-1=n+2
则f(2,0)=f(1,1)=3 则f(2,1)=f[1,f(2,0)]=f(2,0)+2=5
再令x=1,y=n得f(2,n+1)=f[1,f(2,n)=f(2,n)+2 则{f(1,n)}是首项为f(2,1)=5公差为2的等差数列
故f(2,n)=5+2(n-2)=2n+3
再令x=2,y=n得f(3,n+1)=f[2,f(3,n)=2f(3,n)+3
即f(3,n+1)=2f(3,n)+3
故b(n+1)=f(3,n+1)+3=2f(3,n)+3+3=2[f(3,n)+3]=2bn
故{bn}是首项为f(3,1)+3=f[2,f(3,0)]=2f(3,0)+3=2f(2,1)+3=13公比为2的等比数列
(4)由(3)的bn=13*2^(n-1) 则f(3,n)=bn-3=13*2^(n-1) -3
故f(3,2008)=13*2^2007-3
看了 数列题!f(x,y)对所有实...的网友还看了以下:
已知数列1,2,8,现在1和2之间插入m个数,在2和8之间插入n个数,使构成等比数列,若n-m=3 2020-06-04 …
在公差不为零的等差数列{x(n)}和等比数列{y(n)}中,已知x1=1,且x1=y1,x2=y2 2020-06-04 …
求救:关于无穷数列的问题:数列X(N)和数列Y(N)趋向于无穷时是零已知数列X(n)Y(n)的乘积 2020-06-14 …
下列关于函数y=x2-6x+10的四个命题:①当x=0时,y有最小值10;②n为任意实数,x=3+ 2020-06-14 …
数列an的前n项和为Sn,若a1=3,点(Sn,Sn+1)在直线y=(n+1)x/n+n+1上,求 2020-07-11 …
已知m.n为正整数,实数x,y满足x+y=4(√x+m+√y+m)若x+y的最大值40,则m+n= 2020-07-26 …
列举法表示下列集合A={x∈N|(9-x)分之9∈N}C={y|y=负x方+6,x∈N,y∈N}D 2020-08-01 …
下列关于置换反应M+X→N+Y其中M、N为单质,X,Y为化合物,反应条件已略去)的说法中正确的是() 2020-10-30 …
1.若(a^n*b^m*b)³=a^9*b^15,求2^m+n的值.2.计算;a^n-5(a^n+1 2020-11-01 …
N道初二因式分解1.4x^4-a^2-6a-9=()^2-()^22.若2^n-1/2^n=6,则4 2020-11-03 …