早教吧作业答案频道 -->其他-->
(2014•虹口区三模)已知函数f(x)=ax2+bx+5(常数a,b∈R)满足f(1)+f(-1)=14.(1)求出a的值,并就常数b的不同取值讨论函数f(x)奇偶性;(2)若f(x)在区间(-∞,-30.5)上单调递
题目详情
(2014•虹口区三模)已知函数f(x)=ax2+
+5(常数a,b∈R)满足f(1)+f(-1)=14.
(1)求出a的值,并就常数b的不同取值讨论函数f(x)奇偶性;
(2)若f(x)在区间(-∞,-
)上单调递减,求b的最小值;
(3)在(2)的条件下,当b取最小值时,证明:f(x)恰有一个零点q且存在递增的正整数数列{an},使得
=q a1+q a2+q a3+…+q an+…成立.
b |
x |
(1)求出a的值,并就常数b的不同取值讨论函数f(x)奇偶性;
(2)若f(x)在区间(-∞,-
3 | 0.5 |
(3)在(2)的条件下,当b取最小值时,证明:f(x)恰有一个零点q且存在递增的正整数数列{an},使得
2 |
5 |
▼优质解答
答案和解析
(1)由f(1)+f(-1)=14得(a+b+5)+(a-b+5)=14,所以解得a=2;
所以f(x)=2x2+
+5,定义域为(-∞,0)∪(0,+∞);
当b=0时,对于定义域内的任意x,有f(-x)=f(x)=2x2+5,所以f(x)为偶函数.
当b≠0时,f(1)+f(-1)=14≠0,所以f(-1)≠-f(1),所以f(x)不是奇函数;f(-1)-f(1)=-2b≠0,所以f(x)不是偶函数;
所以,b=0时f(x)为偶函数,b≠0时,f(x)为非奇非偶函数.
(2)f′(x)=4x−
=
=0,解得x=
,所以x∈(-∞,
)时,f′(x)<0,所以f(x)在(-∞,
)上单调递减,又f(x)在(−∞,−
)上单调递减,所以−
≤
,解得 b≥-2,所以b的最小值是-2.
(3)在(2)的条件下,f(x)=2x2−
+5;
当 x<0时,f(x)>0恒成立,函数f(x)在(-∞,0)上无零点;
当 x>0时,f′(x)=4x+
>0,所以函数f(x)在(0,+∞)上递增,又f(
)=−
<0,f(1)=5>0;
∴f(x)在(
,1)上有一个零点q,即q∈(
,1),且f(q)=2
所以f(x)=2x2+
b |
x |
当b=0时,对于定义域内的任意x,有f(-x)=f(x)=2x2+5,所以f(x)为偶函数.
当b≠0时,f(1)+f(-1)=14≠0,所以f(-1)≠-f(1),所以f(x)不是奇函数;f(-1)-f(1)=-2b≠0,所以f(x)不是偶函数;
所以,b=0时f(x)为偶函数,b≠0时,f(x)为非奇非偶函数.
(2)f′(x)=4x−
b |
x2 |
4x3−b |
x2 |
3 |
| ||
3 |
| ||
3 |
| ||
3 | 0.5 |
3 | 0.5 |
3 |
| ||
(3)在(2)的条件下,f(x)=2x2−
2 |
x |
当 x<0时,f(x)>0恒成立,函数f(x)在(-∞,0)上无零点;
当 x>0时,f′(x)=4x+
2 |
x2 |
1 |
4 |
23 |
8 |
∴f(x)在(
1 |
4 |
1 |
4 |
作业帮用户
2016-12-09
看了 (2014•虹口区三模)已知...的网友还看了以下:
求证:函数y=f(a+x)与函数y=f(a-x)关于x=0对称,其中x∈R求证:函数y=f(a+x 2020-05-16 …
如何理解复合函数F(x)=f(u(x)),如果u(x)为偶函数,则F(x)为偶函数;如果u(x)为 2020-05-16 …
复合函数奇偶性质的证明对于复合函数F(x)=f[g(x)](1)若g(x)为偶函数,则F(x)为偶 2020-06-08 …
已知定义域为R的函数f(x)在区间(8,+∞)上为减函数,且函数y=f(x+8)为偶函数则()A. 2020-06-08 …
f(x)是R上的函数,若f(x+1)和f(x-1)都是奇函数,则下列判断正确的是1、f(x)是偶函 2020-06-08 …
有一部搞不懂已知函数f(x)为偶函数,g(x)为奇函数,且f(x)+g(x)=x^2+2x+3,求 2020-06-26 …
f(x)是偶函数,f(x-1)是奇函数,若f(0.5)=9,则等于f(8.5)=因为f(x)偶函数 2020-07-14 …
抽象函数模型函数证明为什么百科中只给出了f(xy)=f(x)f(y)具体化为幂函数的证明幂函数:f 2020-07-19 …
设f(x)是连续函数,F(x)是f(x)的原函数,则下列结论正确的是?A当f(x)是奇函数时,F( 2020-07-30 …
函数奇偶性判断可以用代入法吗?设函数f(x)对于任意x,y属于R,都有f(x+y)=f(x)+f( 2020-08-01 …