早教吧作业答案频道 -->数学-->
多元函数的连续和极限题(x^2+y^2)不为0时,f(x,y)=(xy^2)/(x^2+y^2);(x^2+y^2)为0时,f(x,y)=0,讨论这个函数在原点的连续性,偏导数的存在性,是否可微.
题目详情
多元函数的连续和极限题
(x^2+y^2) 不为0时,f(x,y)=(xy^2)/(x^2+y^2);(x^2+y^2) 为0时,f(x,y)=0,讨论这个函数在原点的连续性,偏导数的存在性,是否可微.
(x^2+y^2) 不为0时,f(x,y)=(xy^2)/(x^2+y^2);(x^2+y^2) 为0时,f(x,y)=0,讨论这个函数在原点的连续性,偏导数的存在性,是否可微.
▼优质解答
答案和解析
首先x²+y² ≥ 2|xy|,故1/2 ≥ |xy|/(x²+y²) ≥ 0,于是|y|/2 ≥ |xy²/(x²+y²)| = |f(x,y)| ≥ 0.
当(x,y) → (0,0)时,|y|/2 → 0,因此f(x,y) → 0 = f(0,0),函数在原点连续.
在f(x,y)在原点对x的偏导即f(x,0)对x的导数.
f(x,0) = 0对任意x成立,故∂f/∂x在原点存在并等于0.
同理,由f(0,y) = 0对任意y成立,∂f/∂y也在原点存在并等于0.
由定义,f(x,y)在原点可微即f(x,y)-f(0,0)-x·∂f(0,0)/∂x-y·∂f(0,0)/∂y = o(√(x²+y²)).
代入f(0,0) = 0,∂f(0,0)/∂x = ∂f(0,0)/∂y = 0即f(x,y) = o(√(x²+y²)).
然而对x = y,有f(x,y) = f(x,x) = x³/(2x²) = x/2 = √(x²+y²)/(2√2).
因此(x,y) → (0,0)时,f(x,y)并不是√(x²+y²)的高阶无穷小,也即f(x,y)在原点不可微.
注:也可以用另一种说法:f(x,y)在原点对向量(1,1)的方向导数 = 1/2,
并不等于(1,1)·(∂f(0,0)/∂x,∂f(0,0)/∂y) = ∂f(0,0)/∂x+∂f(0,0)/∂y = 0,因此在原点不可微.
当(x,y) → (0,0)时,|y|/2 → 0,因此f(x,y) → 0 = f(0,0),函数在原点连续.
在f(x,y)在原点对x的偏导即f(x,0)对x的导数.
f(x,0) = 0对任意x成立,故∂f/∂x在原点存在并等于0.
同理,由f(0,y) = 0对任意y成立,∂f/∂y也在原点存在并等于0.
由定义,f(x,y)在原点可微即f(x,y)-f(0,0)-x·∂f(0,0)/∂x-y·∂f(0,0)/∂y = o(√(x²+y²)).
代入f(0,0) = 0,∂f(0,0)/∂x = ∂f(0,0)/∂y = 0即f(x,y) = o(√(x²+y²)).
然而对x = y,有f(x,y) = f(x,x) = x³/(2x²) = x/2 = √(x²+y²)/(2√2).
因此(x,y) → (0,0)时,f(x,y)并不是√(x²+y²)的高阶无穷小,也即f(x,y)在原点不可微.
注:也可以用另一种说法:f(x,y)在原点对向量(1,1)的方向导数 = 1/2,
并不等于(1,1)·(∂f(0,0)/∂x,∂f(0,0)/∂y) = ∂f(0,0)/∂x+∂f(0,0)/∂y = 0,因此在原点不可微.
看了 多元函数的连续和极限题(x^...的网友还看了以下:
设定义在R上的函数f(x)是最小正周期为2π的偶函数,f′(x)是f(x)的导函数,当x∈[0,π 2020-04-12 …
已知关于X的一元二次方程x^2+2(k-1)x+k^2-1=0有两个不相等的实数根已知关于x的一元 2020-05-16 …
有五位小朋友踢毽子比赛,小明连续2分钟踢了98下,小纹连续3分钟踢了115下,小莹连续2分钟踢了8 2020-06-03 …
部门编码级次为2-2-2,则下列部门编码正确的是()A.办公室101B.办公室010部门编码级次为 2020-06-18 …
已知椭圆x^2/a^2+y^2/b^2=1(a>b>c)的离心率为√2/2,以该椭圆上的点和椭圆的 2020-06-30 …
麦秸秆燃烧时将化学能转化为能,能源利用率很低,为了解决这一问题,某研究小组将干燥的秸秆制成秸秆煤, 2020-07-10 …
如图:把△ABC纸片沿DE折叠,当点A在四边形BCDE的外部时,记∠AEB为∠1,∠ADC为∠2, 2020-07-22 …
已知椭圆E:x2/a2+y2/b2=1(a>b>0)的离心率为√2/2,且过点P(2,√2),设椭 2020-07-31 …
(x-2)^2=9(x+3)(步骤)用十字相乘法:x^2-5倍的根号2*x+83x^2-2x-1= 2020-08-03 …
由2kg密度为ρ1的金属甲和4kg密度为ρ2的金属乙做成质量为6kg的合金球,则合金球的密度为()A 2020-11-01 …