早教吧作业答案频道 -->其他-->
给定集合An={1,2,3,…,n},映射f:An→An满足:①当i,j∈An,i≠j时,f(i)≠f(j);②任取m∈An,若m≥2,则有m∈{f(1),f(2),..,f(m)}.则称映射f:An→An是一个“优映射”.例
题目详情
给定集合An={1,2,3,…,n},映射f:An→An满足:
①当i,j∈An,i≠j时,f(i)≠f(j);
②任取m∈An,若m≥2,则有m∈{f(1),f(2),..,f(m)}.
则称映射f:An→An是一个“优映射”.例如:用表1表示的映射f:A3→A3是一个“优映射”.
表1
表2
(1)已知表2表示的映射f:A4→A4是一个优映射,请把表2补充完整(只需填出一个满足条件的映射);
(2)若映射f:A10→A10是“优映射”,且方程f(i)=i的解恰有6个,则这样的“优映射”的个数是______.
①当i,j∈An,i≠j时,f(i)≠f(j);
②任取m∈An,若m≥2,则有m∈{f(1),f(2),..,f(m)}.
则称映射f:An→An是一个“优映射”.例如:用表1表示的映射f:A3→A3是一个“优映射”.
表1
i | 1 | 2 | 3 |
f(i) | 2 | 3 | 1 |
i | 1 | 2 | 3 | 4 |
f(i) | 3 |
(2)若映射f:A10→A10是“优映射”,且方程f(i)=i的解恰有6个,则这样的“优映射”的个数是______.
▼优质解答
答案和解析
解;(1)
;
(2)根据优映射的定义可知:f(1)≠1,
∵m≥2,则有m∈{f(1),f(2),..,f(m)},且映射f:A10→A10是“优映射”,且方程f(i)=i的解恰有6个,
故有C96=84
故答案为:
,84

(2)根据优映射的定义可知:f(1)≠1,
∵m≥2,则有m∈{f(1),f(2),..,f(m)},且映射f:A10→A10是“优映射”,且方程f(i)=i的解恰有6个,
故有C96=84
故答案为:

看了 给定集合An={1,2,3,...的网友还看了以下:
f(1,1)=1f(m,n)=N*(m,n)=N*任意m,n=N*有f(m,n+1)=f(m,n)+ 2020-03-30 …
某元素R的近似相对原子质量为M,有质量数分别为m、n的两种原子,则mR和nR在自然界中的原子个数比 2020-05-13 …
,;定义在正整数集f(x)对任意m,n,都有f(m+n)=f(m)+f(n)+4(m+n)-2,且 2020-05-13 …
判断命题是正确与否1、α∥β,m∈α则m∥β2,、m∥α,n∈α则m平行n3.α⊥β,m∥α,则m 2020-05-20 …
小球M,N,M浸在水中用线拴着静止,N则浸在油中用线拴着,水密度〉油〉N〉M,则M体积,N体积谁大 2020-06-29 …
濡傛灉m-3n+4=0,闾d箞(m-3n)虏+7m鲁-3(2m鲁n-m虏n-1)+3(m鲁+2m鲁 2020-07-01 …
A(n,m)是数学排列的一个算数表达式,也可表示为P(n,m)一般记作(如图所示),但是由于单行不 2020-07-06 …
若函数f(x)满足对于x∈[n,m](m>n)有n/k≤f(x)≤km恒成立,则称函数f(x)在间 2020-07-26 …
已知m+n=1,mn=-1/2,利用因式分解(提公因式法),求m(m+n)(m-n)-m(m+n) 2020-08-03 …
已知m>0,n>0,且根号m(根号m+根号n)=3根号(根号m+5倍根号n).已知m>0,n>0,且 2020-12-31 …