早教吧 育儿知识 作业答案 考试题库 百科 知识分享

给定集合An={1,2,3,…,n},映射f:An→An满足:①当i,j∈An,i≠j时,f(i)≠f(j);②任取m∈An,若m≥2,则有m∈{f(1),f(2),..,f(m)}.则称映射f:An→An是一个“优映射”.例

题目详情
给定集合An={1,2,3,…,n},映射f:An→An满足:
①当i,j∈An,i≠j时,f(i)≠f(j);
②任取m∈An,若m≥2,则有m∈{f(1),f(2),..,f(m)}.
则称映射f:An→An是一个“优映射”.例如:用表1表示的映射f:A3→A3是一个“优映射”.
表1                               
i 1 2 3
f(i) 2 3 1
表2
i 1 2 3 4
f(i) 3
(1)已知表2表示的映射f:A4→A4是一个优映射,请把表2补充完整(只需填出一个满足条件的映射);
(2)若映射f:A10→A10是“优映射”,且方程f(i)=i的解恰有6个,则这样的“优映射”的个数是______.
▼优质解答
答案和解析
解;(1)
(2)根据优映射的定义可知:f(1)≠1,
∵m≥2,则有m∈{f(1),f(2),..,f(m)},且映射f:A10→A10是“优映射”,且方程f(i)=i的解恰有6个,
故有C96=84
故答案为:,84