早教吧作业答案频道 -->其他-->
证明limn→无穷[(1/n2+n+1)+(2/n2+n+2)+……+(n/n2+n+n)]=½
题目详情
证明limn→无穷[(1/n2+n+1)+(2/n2+n+2)+……+(n/n2+n+n)]=½
▼优质解答
答案和解析
当n→无穷,
1/(n^2+n+1)+2/(n^2+n+2)+...+n/(n^2+n+n)
≤1/(n^2+n+1)+2/(n^2+n+1)+...+n/(n^2+n+1)
=(1+2+...+n)/(n^2+n+1)
=(1/2)(n+1)n/(n^2+n+1)
-> 1/2
1/(n^2+n+1)+2/(n^2+n+2)+...+n/(n^2+n+n)
≥1/(n^2+n+n)+2/(n^2+n+n)+...+n/(n^2+n+n)
= (1+2+...+n)/[(n^2)+2n]
= (1/2)(n+1)n/[(n^2)+2n]
-> 1/2
所以,
当n→无穷,1/(n^2+n+1)+2/(n^2+n+2)+...+n/(n^2+n+n)
=1/2
1/(n^2+n+1)+2/(n^2+n+2)+...+n/(n^2+n+n)
≤1/(n^2+n+1)+2/(n^2+n+1)+...+n/(n^2+n+1)
=(1+2+...+n)/(n^2+n+1)
=(1/2)(n+1)n/(n^2+n+1)
-> 1/2
1/(n^2+n+1)+2/(n^2+n+2)+...+n/(n^2+n+n)
≥1/(n^2+n+n)+2/(n^2+n+n)+...+n/(n^2+n+n)
= (1+2+...+n)/[(n^2)+2n]
= (1/2)(n+1)n/[(n^2)+2n]
-> 1/2
所以,
当n→无穷,1/(n^2+n+1)+2/(n^2+n+2)+...+n/(n^2+n+n)
=1/2
看了 证明limn→无穷[(1/n...的网友还看了以下:
1证1+1/2+1/3+...+1/n>ln(n+1)2证1/2+1/3+,+1/n+1 2020-05-22 …
初学行列式,请帮我证明两道题,|ax+byay+bzza+bx||xyz|1、证明:|ay+bza 2020-06-11 …
证明:2ln(n+1)-2<1+1/2+1/3+……+1/n要求:不能用数学归纳法.上面的题错了不 2020-06-11 …
1.计算:cot(-15π/4)注:括号内是四分之十五派2.证明:(tanα+secα-1)/(t 2020-06-13 …
论证1+2=3迄今为止,听说都没有谁论证成功1+1=2,而其它则在1+1=2的基础上论证成功了…… 2020-07-02 …
(2000•河北)观察下列各式及其验证过程:验证:223=2+23;验证:223=233=(23− 2020-07-19 …
不等式证明和三角形的关系.1.已知△ABC的外接圆半径R=1,S△ABC=1/4a,b,c是△AB 2020-07-24 …
1.用数学归纳法证明f(n)=1+(1/2)+(1/3)+.+1/(2^n)的过程中,从n=k到n 2020-08-01 …
数学归纳法cosX/2^n1、数列{an}中,a1=1,S(n+1)=4a(n)+2,用数学归纳法 2020-08-03 …
x、y、z属于正实数,且xyz=1,求1/(x^2(y+1)+1)+1/(y^2(z+1)+1)+1 2020-10-31 …