早教吧作业答案频道 -->数学-->
设f(x)=a(x-5)2+6lnx,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线与y轴相交于点(0,6).(1)确定a的值;(2)求函数f(x)的单调区间与极值.
题目详情
设f(x)=a(x-5)2+6lnx,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线与y轴相交于点(0,6).
(1)确定a的值;
(2)求函数f(x)的单调区间与极值.
(1)确定a的值;
(2)求函数f(x)的单调区间与极值.
▼优质解答
答案和解析
(1)因f(x)=a(x-5)2+6lnx,故f′(x)=2a(x-5)+
,(x>0),
令x=1,得f(1)=16a,f′(1)=6-8a,
∴曲线y=f(x)在点(1,f(1))处的切线方程为y-16a=(6-8a)(x-1),
由切线与y轴相交于点(0,6).
∴6-16a=8a-6,
∴a=
.
(2)由(I)得f(x)=
(x-5)2+6lnx,(x>0),
f′(x)=(x-5)+
=
,令f′(x)=0,得x=2或x=3,
当0<x<2或x>3时,f′(x)>0,故f(x)在(0,2),(3,+∞)上为增函数,
当2<x<3时,f′(x)<0,故f(x)在(2,3)上为减函数,
故f(x)在x=2时取得极大值f(2)=
+6ln2,在x=3时取得极小值f(3)=2+6ln3.
6 |
x |
令x=1,得f(1)=16a,f′(1)=6-8a,
∴曲线y=f(x)在点(1,f(1))处的切线方程为y-16a=(6-8a)(x-1),
由切线与y轴相交于点(0,6).
∴6-16a=8a-6,
∴a=
1 |
2 |
(2)由(I)得f(x)=
1 |
2 |
f′(x)=(x-5)+
6 |
x |
(x−2)(x−3) |
x |
当0<x<2或x>3时,f′(x)>0,故f(x)在(0,2),(3,+∞)上为增函数,
当2<x<3时,f′(x)<0,故f(x)在(2,3)上为减函数,
故f(x)在x=2时取得极大值f(2)=
9 |
2 |
看了 设f(x)=a(x-5)2+...的网友还看了以下:
已知定义在R上的奇函数f(x)满足f(x+2e)=-f(x)(其中e=2.7182…),且在区间[ 2020-04-06 …
读图,位于东西半球分界线上的点是()A.F点B.图中E点的经纬度是东经120度,北纬40度C.图中 2020-04-23 …
读图完成问题小题1:位于东西半球分界线上的点是A.F点B.D点C.C点D.G点小题2:同时位于东半 2020-04-23 …
(2013•上海)如图所示的E,F,P,Q四点中,磁场最强的是()A.E点B.F点C.P点D.Q点 2020-06-12 …
如图是“二分法”解方程的流程图.在①~④处应填写的内容分别是()A.f(a)f(m)<0;a=m; 2020-07-09 …
(2014•黄山一模)已知e是自然对数的底数,函数f(x)=ex+x-2的零点为a,函数g(x)= 2020-08-02 …
已知映射f:P(m,n)→P/(m,n)(m≥0,n≥0).设点A(1,3),B(2,2),点M是线 2020-11-03 …
(2014•龙岩)如图是条形磁体的磁感线分布,图中的E、F、P、Q四点,磁场最强的是()A.E点B. 2020-11-12 …
一列横波沿绳子向右传播,某时刻绳子形成如图所示的形状,对此绳上A、B、C、D、E、F六个质点()A. 2020-12-15 …
函数y=f(x)在区间(a,b)(a<b)内有零点,则()A.f(a)f(b)<0B.f(a)f(b 2020-12-26 …