早教吧作业答案频道 -->其他-->
已知:在△ABC中,AB=2BC,∠ABC=60°(1)如图1,求证:∠BAC=30°;(2)分别以AB、AC为边,在△ABC外作等边三角形ABD和等边三角形ACE,联结DE,交AB于点F如图2.求证:DF=EF.
题目详情
已知:在△ABC中,AB=2BC,∠ABC=60°
(1)如图1,求证:∠BAC=30°;
(2)分别以AB、AC为边,在△ABC外作等边三角形ABD和等边三角形ACE,联结DE,交AB于点F如图2.求证:DF=EF.

(1)如图1,求证:∠BAC=30°;
(2)分别以AB、AC为边,在△ABC外作等边三角形ABD和等边三角形ACE,联结DE,交AB于点F如图2.求证:DF=EF.

▼优质解答
答案和解析
(1)证明:如图1,取AB中点D,连结CD,则AB=2BD.
∵AB=2BC,
∴BD=BC.
又∵∠ABC=60°,
∴△BCD为等边三角形,
∴CD=BD,∠BDC=60°,
∴AD=CD,
∴∠A=∠ACD,
又∵∠BDC=∠A+∠ACD=2∠A=60°,
∴∠BAC=30°;
(2)证明:如图2,作DG∥AE,交AB于点G,
由∠EAC=60°,∠CAB=30°得:∠FAE=∠EAC+∠CAB=90°,
∴∠DGF=∠FAE=90°,
又∵∠ACB=90°,∠CAB=30°,
∴∠ABC=60°,
又∵△ABD为等边三角形,∠DBG=60°,DB=AB,
∴∠DBG=∠ABC=60°,
在△DGB和△ACB中,
,
∴△DGB≌△ACB(AAS),
∴DG=AC,
又∵△AEC为等边三角形,∴AE=AC,
∴DG=AE,
在△DGF和△EAF中,
,
∴△DGF≌△EAF(AAS),
∴DF=EF.

∵AB=2BC,
∴BD=BC.
又∵∠ABC=60°,
∴△BCD为等边三角形,
∴CD=BD,∠BDC=60°,
∴AD=CD,
∴∠A=∠ACD,
又∵∠BDC=∠A+∠ACD=2∠A=60°,
∴∠BAC=30°;
(2)证明:如图2,作DG∥AE,交AB于点G,
由∠EAC=60°,∠CAB=30°得:∠FAE=∠EAC+∠CAB=90°,
∴∠DGF=∠FAE=90°,
又∵∠ACB=90°,∠CAB=30°,
∴∠ABC=60°,
又∵△ABD为等边三角形,∠DBG=60°,DB=AB,
∴∠DBG=∠ABC=60°,
在△DGB和△ACB中,
|
∴△DGB≌△ACB(AAS),
∴DG=AC,
又∵△AEC为等边三角形,∴AE=AC,
∴DG=AE,
在△DGF和△EAF中,
|
∴△DGF≌△EAF(AAS),
∴DF=EF.
看了 已知:在△ABC中,AB=2...的网友还看了以下:
在直角坐标系中有点A(a,b),B(a,c),C(-a,-b),D(-a,-c)(a≠0,b≠c) 2020-04-27 …
现有A,B,C,D四种物质,已知A,B为黑色粉末,C,D为无色气体,A,B在高温下作用能生成D,A 2020-05-17 …
已知有理数a.b.c.在数轴上的位置如图所示,|a|=|b|1.a+b与a/b的值;2.c-a/c 2020-06-03 …
正余弦综合应用1.在三角形ABC中,a,b,c分别为三个内角A,B,C所对的边,两个向量P=(a+ 2020-06-03 …
若f(x)在R上有二阶连续导数,证明对任意的a<c<b,存在ξ∈(a,b),使得f(a)(a−b) 2020-06-12 …
已知A.B.C是平面内的三点,AB=3,BC=3,AC=6,下列说法中,正确的是.()A.可以画一 2020-07-21 …
1.在三角形abc中,证明a/b-b/a=c(CosB/b-CosA/a)2.在三角形abc中,已 2020-07-21 …
三名运动员A、B、C在进行长跑比赛.在某一时刻,A在前,C在后面,B在A、C距离的正中间.过了10 2020-07-23 …
直线a、b、c在同一平面内,(1)如果a⊥b,b⊥c,那么a∥c;(2)如果a∥b,b∥c,那么a∥ 2020-11-02 …
绝对值化简,我不要解题的方式,要方法,如|a+b-c|只抄a+b-c,我要的不是解题过程,而是方法方 2020-12-12 …