早教吧作业答案频道 -->数学-->
椭圆x2/a2+y2/b2+1的左右焦点分别为F1F2,短轴两个端点为AB且四边形F1AF2B是边长为2的正方形1求椭圆的方程2若CD是椭圆长轴的左右端点动点M满足MD垂直CD交椭圆于P证明向量OMOP的内积为定值3在2
题目详情
椭圆x2/a2+y2/b2+1的左右焦点分别为F1F2,短轴两个端点为AB 且四边形F1AF2B是边长为2的正方形
1 求椭圆的方程2若CD是椭圆长轴的左右端点 动点M满足MD垂直CD交椭圆于P 证明向量OM OP的内积为定值3在2的条件下 x轴上是否存在异于点C的定点Q 使得以MP为直径的园恒过直线DP MQ的交点 若存在求出点Q的坐标
1 求椭圆的方程2若CD是椭圆长轴的左右端点 动点M满足MD垂直CD交椭圆于P 证明向量OM OP的内积为定值3在2的条件下 x轴上是否存在异于点C的定点Q 使得以MP为直径的园恒过直线DP MQ的交点 若存在求出点Q的坐标
▼优质解答
答案和解析
1、因为四边形F1AF2B是边长为2的正方形
所以c=√2 b=√2
a=2
得到椭圆方程为
x^2/4+y^2/2=1
2、设向量OM(2,b)
向量OC=(2,b)
MC的直线方程为y=k(x+2)
代入M(2,b) 得到k=b/4
即直线方程为y=b(x+2)/4
或写成4y/b=x+2
将两个解析式分别与椭圆方程联立,得到
(1+b^2/8)x^2+b^2x/2+b^2/2-4=0
根据韦达定理 x1x2=(4b^2-32)/(8+b^2)
已知x1=-2即C的横坐标,所以P的横坐标为(16-2b^2)/(8+b^2)
同理P的纵坐标为16b^2/(16b+2b^3)
所以向量OM与向量OP的乘积为
2*(16-2b^2)/(8+b^2)+b*16b^2/(16b+2b^3)
=(32+4b^2)/(8+b^2)=4
3、设Q(a,0)
因为要使以MP为直径的园恒过直线DP MQ的交点
所以PD垂直于MQ,即两者向量之积为0
OM(2,b) OP[(16-2b^2)/(8+b^2),16b^2/(16b+2b^3)]
可以得到
DP=[-4b^2/(8+b^2),8b/(8+b^2)]
MQ=(a-2,-b)
-4(a-2)b^2/(8+b^2)-8b^2/(8+b^2)=0
a=0
Q(0,0)
请点击下面的【选为满意回答】按钮,
所以c=√2 b=√2
a=2
得到椭圆方程为
x^2/4+y^2/2=1
2、设向量OM(2,b)
向量OC=(2,b)
MC的直线方程为y=k(x+2)
代入M(2,b) 得到k=b/4
即直线方程为y=b(x+2)/4
或写成4y/b=x+2
将两个解析式分别与椭圆方程联立,得到
(1+b^2/8)x^2+b^2x/2+b^2/2-4=0
根据韦达定理 x1x2=(4b^2-32)/(8+b^2)
已知x1=-2即C的横坐标,所以P的横坐标为(16-2b^2)/(8+b^2)
同理P的纵坐标为16b^2/(16b+2b^3)
所以向量OM与向量OP的乘积为
2*(16-2b^2)/(8+b^2)+b*16b^2/(16b+2b^3)
=(32+4b^2)/(8+b^2)=4
3、设Q(a,0)
因为要使以MP为直径的园恒过直线DP MQ的交点
所以PD垂直于MQ,即两者向量之积为0
OM(2,b) OP[(16-2b^2)/(8+b^2),16b^2/(16b+2b^3)]
可以得到
DP=[-4b^2/(8+b^2),8b/(8+b^2)]
MQ=(a-2,-b)
-4(a-2)b^2/(8+b^2)-8b^2/(8+b^2)=0
a=0
Q(0,0)
请点击下面的【选为满意回答】按钮,
看了 椭圆x2/a2+y2/b2+...的网友还看了以下:
AB是圆O的直径,BM垂直于AB于B点,点C是射线BM上异于端点的一动点,AC交圆O于D点,过D点 2020-05-16 …
已知圆心C在x轴上的圆过点A(2,2)和B(4,0).(1)求圆C的方程;(2)求过点M(4,6) 2020-06-09 …
如图所示,一质量为m的小球置于半径为R的光滑竖直圆轨道最低点A处,B为轨道最高点,C、D为圆的水平 2020-06-23 …
如图,半径R=0.3m的光滑圆弧轨道固定在竖直平面内,轨道的一个端点B和圆心O的连线与水平方向间的 2020-07-12 …
如图所示,半径R=1.0m的光滑圆弧轨道固定在竖直平面内,轨道的一个端点B和圆心O的连线与水平方向 2020-07-12 …
设椭圆C:,定义椭圆C的“相关圆”方程为,若抛物线的焦点与椭圆C的一个焦点重合,且椭圆C短轴的一个 2020-07-12 …
在一个椭圆中以焦点f1,f2为直径两端点的圆,恰好过椭圆短轴的两个端点,求椭圆离心率参考答案中说b 2020-07-21 …
已知圆心为C的圆经过点A(-3,0)和点B(1,0)两点,且圆心C在直线y=x+1上.(1)求圆C 2020-08-02 …
圆o过点B,C,圆心o在等腰直角三角形内部(急,1.(2010安徽省中中考)如图,⊙O过点B、C.圆 2020-12-12 …
救急,五分钟搞定.已知圆C的圆心在直线L:x-2y-1=0上,并且经过A(2,1)、B(1,2)两点 2020-12-19 …