早教吧作业答案频道 -->数学-->
用数学归纳法证明1/n+1/n+1+1/n+2+...+1/n^2>1(n>1且为正整数如题
题目详情
用数学归纳法证明1/n+1/n+1+1/n+2+...+1/n^2>1(n>1且为正整数
如题
如题
▼优质解答
答案和解析
令N=2,
原式=1/2+1/3+1/4=13/12>1成立
设N=K时成立.
即1/K+1/(K+1)+...+1/K^2>1
当N=K+1时
原式=1/(K+1)+1/(K+2)+...+1/K^2+1/(K^2+1)+...+1/(K^2+2K+1)
1/(K+1)+1/(K+2)+...+1/K^2+1/(K^2+1)+...+1/(K^2+2K+1)-(1/K+...+1/K^2)
=1/(K^2+1)+...+1/(K^2+2K+1)-1/K
>(2K+1)/(K^2+2K+1)-1/K>0
所以原式成立
原式=1/2+1/3+1/4=13/12>1成立
设N=K时成立.
即1/K+1/(K+1)+...+1/K^2>1
当N=K+1时
原式=1/(K+1)+1/(K+2)+...+1/K^2+1/(K^2+1)+...+1/(K^2+2K+1)
1/(K+1)+1/(K+2)+...+1/K^2+1/(K^2+1)+...+1/(K^2+2K+1)-(1/K+...+1/K^2)
=1/(K^2+1)+...+1/(K^2+2K+1)-1/K
>(2K+1)/(K^2+2K+1)-1/K>0
所以原式成立
看了 用数学归纳法证明1/n+1/...的网友还看了以下:
已知数列{an}(n≥0)满足a0=0,a1=1,对于所有正整数n,有an+1=2an+2007a 2020-05-17 …
把整数整1,2,3,4,5.按如下排列:第一行1,第二行2,3,第三行4,5,6,按如此规律,可知 2020-06-05 …
在(n+1)=n^2+2n+1中,当n=1,2,3……这些正整数时,可以得到n个等式将这些等式在( 2020-06-10 …
证明对于每一个n数11······1(n个1)211······1(n个1)是合数 2020-06-11 …
高手整数数列{an}满足a1a2+a2a3+...+a(n-1)an=(n-1)n(n+1)/3, 2020-07-09 …
爆难高手整数数列{an}满足a1a2+a2a3+...+a(n-1)an=(n-1)n(n+1)/ 2020-07-09 …
已知数列an中,a1=1,an=(2n/n-1)an-1+n(n为大于等于2的正整数),且bn=a 2020-07-28 …
我们把分数分子是1,分母是正整数的分数叫做分数单位.任何一个单位分数1/n=1/p+1/q(n,p 2020-07-30 …
若n为合数,n|x^2-1,则gcd(x+1,n)|ngcd(x-1,n)|n且gcd(x+1,n 2020-07-30 …
一道函数证明题设f(x)=ax^2+bx+c是整系数二次三项式,m,n是整数,且f(m)与f(n) 2020-07-31 …