早教吧作业答案频道 -->数学-->
已知圆C:x^2+y^2+ax-4y+1=0(a属于R),过定点P(0,1)作斜率为1的直线交圆C于A,B两点P为线段AB的中点,1)求a的值;(2)设E为圆C上异于A、B的一点,求△ABE面积的最大值.(3)从圆外一点M向圆c引一条切线,
题目详情
已知圆C:x^2+y^2+ax-4y+1=0(a属于R),过定点P(0,1)作斜率为1的直线交圆
C于A,B两点 P为线段AB的中点,1)求a的值; (2) 设E为圆C上异于A、B的一点,求△ABE面积的最大值.(3) 从圆外一点M向圆c引一条切线,切点为n,且有|mn|=|mp|,求|mn|的最小值,并求出此时m点的坐标
C于A,B两点 P为线段AB的中点,1)求a的值; (2) 设E为圆C上异于A、B的一点,求△ABE面积的最大值.(3) 从圆外一点M向圆c引一条切线,切点为n,且有|mn|=|mp|,求|mn|的最小值,并求出此时m点的坐标
▼优质解答
答案和解析
1、圆方程为:(x+a/2)^2+(y-2)^2=a^2/4+3,
圆心坐标C(-a/2,2)
P(0,1)j 弦AB的中点,因圆心纵坐标为2,故圆心在直线y=2上,
弦的直线方程为:y=x+1,
因P为弦AB的中点,故CP⊥AB,CP的直线方程为y=-x+1,(斜率为其负倒数,为-1),
联立y=2,y=-x+1,求出交点,即为圆心坐标,
x=-1,
则圆心坐标C(-1,2),
-a/2=-1,
∴a=2.
圆方程为:(x+1)^2+(y-2)^2=4.
圆和X轴相切于B(-1,0)点,
2、在相同底AB的三角形中,高最大者面积最大,因此应为过圆心的高,
E点在AB优弧的中点,
y=x+1代入圆方程,解出交点坐标A、B,
x=1,y=2,
或x=-1,y=0,
B(-1,0),A(1,2),
|AB|=2√2,|BP|=√2,
|CP|=√(R^2-BP^2)=√(4-2)=√2,
|EP|=R+|CP|=2+√2,
∴S△EAB(max)=(2+√2)*2√2/2=2√2+2.
3、最短距离应在CP的延长线上,
设M(x0,y0),|MN|=x,
|MP|=x,
|CP|=√2,CN⊥MN,
△CMN是RT△,
根据勾股定理,
MC^2=R^2+MN^2,
(√2+x)^2=2^2+x^2,
x=√2/2,
|MP|=√2/2
则x0=(√2/2)*cos45°=1/2,y0=(√2/2)*sin45°=1/2,
∴M(1/2,1/2),
∴|MN|(min)=√2/2.
圆心坐标C(-a/2,2)
P(0,1)j 弦AB的中点,因圆心纵坐标为2,故圆心在直线y=2上,
弦的直线方程为:y=x+1,
因P为弦AB的中点,故CP⊥AB,CP的直线方程为y=-x+1,(斜率为其负倒数,为-1),
联立y=2,y=-x+1,求出交点,即为圆心坐标,
x=-1,
则圆心坐标C(-1,2),
-a/2=-1,
∴a=2.
圆方程为:(x+1)^2+(y-2)^2=4.
圆和X轴相切于B(-1,0)点,
2、在相同底AB的三角形中,高最大者面积最大,因此应为过圆心的高,
E点在AB优弧的中点,
y=x+1代入圆方程,解出交点坐标A、B,
x=1,y=2,
或x=-1,y=0,
B(-1,0),A(1,2),
|AB|=2√2,|BP|=√2,
|CP|=√(R^2-BP^2)=√(4-2)=√2,
|EP|=R+|CP|=2+√2,
∴S△EAB(max)=(2+√2)*2√2/2=2√2+2.
3、最短距离应在CP的延长线上,
设M(x0,y0),|MN|=x,
|MP|=x,
|CP|=√2,CN⊥MN,
△CMN是RT△,
根据勾股定理,
MC^2=R^2+MN^2,
(√2+x)^2=2^2+x^2,
x=√2/2,
|MP|=√2/2
则x0=(√2/2)*cos45°=1/2,y0=(√2/2)*sin45°=1/2,
∴M(1/2,1/2),
∴|MN|(min)=√2/2.
看了 已知圆C:x^2+y^2+a...的网友还看了以下:
已知2mx-y-8m+3=0,圆c:x^2+y^2-6x-12y+20=0,(1)M∈R,证明:l 2020-05-21 …
求《单身男女》中,高圆圆与吴彦祖吃饭的那场戏中吴彦祖和waiter说的一句台词《单身男女》中,高圆 2020-06-18 …
在平面直角坐标系xOy中,椭圆C的中心为原点,焦点F1,F2在x轴上,离心率为12.过F1的直线交 2020-06-21 …
已知圆c1的方程为x^2+y^2=m(m大于0),圆c2的方程为x^2+y^2+6x-8y-11= 2020-06-30 …
一道高中关于圆的题!求经过A(6.5)B(0.1)两点,并且圆心在直线L:3X+10Y+9=0上的 2020-07-09 …
在平面直角坐标系xOy中,已知圆O:x2+y2=64,圆O1与圆O相交,圆心为O1(9,0),且圆 2020-07-26 …
平面直角坐标系中。圆O1圆心为(0,0),半径为1.圆O2圆心为(4,0),半径1.过动点P作圆O 2020-07-26 …
(2014•宣城三模)在平面直角坐标系x0y中,圆C的方程为x2+y2-8x+15=0,若直线y= 2020-07-30 …
已知点P在xOy平面内,点A的坐标为(0,0,3),PA=5,那么满足此条件的点P组成什么曲线?难 2020-07-31 …
1在平面直角坐标系中,两圆圆心坐标分别为(0,1)(-2,0)两圆的半径分别为1和2那么这两圆的公 2020-08-01 …