早教吧作业答案频道 -->数学-->
已知2mx-y-8m+3=0,圆c:x^2+y^2-6x-12y+20=0,(1)M∈R,证明:l与圆c总相交(2已知2mx-y-8m+3=0,圆c:x^2+y^2-6x-12y+20=0,(1)M∈R,证明:l与圆c总相交(2)m为何值时,L被圆C截得的弦长最短,求此弦长
题目详情
已知2mx-y-8m+3=0,圆c:x^2+y^2-6x-12y+20=0,(1)M∈R,证明:l与圆c总相交(2
已知2mx-y-8m+3=0,圆c:x^2+y^2-6x-12y+20=0,(1)M∈R,证明:l与圆c总相交(2)m为何值时,L被圆C截得的弦长最短,求此弦长
已知2mx-y-8m+3=0,圆c:x^2+y^2-6x-12y+20=0,(1)M∈R,证明:l与圆c总相交(2)m为何值时,L被圆C截得的弦长最短,求此弦长
▼优质解答
答案和解析
解:
(1)
2mx-y-8m-3=0
2m(x-4)-y-3=0
由题目易知,直线l过一定点P(4,-3)
将定点P(4,-3)代入圆方程左式:x^2+y^2-6x+12y+20中,得
4^2+(-3)^2-6*4+12*(-3)+20 = -15 < 0
说明定点P(4,-3)在圆C内部.
所以,不论m为何实数,直线l与圆总相交.
证毕.
2.将圆方程化为标准形式得:
(x-3)^2 + (y+6)^2 = 5^2
易知,圆心为O(3,-6),半径为r=5
要使截得的弦长最短,根据数形结合,易知,当点P(4,-3)为相交弦中点时所截得弦长最短.
因弦心距|OP| = √[(3-4)^2+(-6+3)^2] = √10
所以所截得最短弦长为 d = 2√(25-10) = 2√15
而此时弦所在的直线斜率为
k = -1/k' = -1/3
即 2m = -1/3
所以m = -1/6
综上,知,m = -1/6时,l被圆C截得弦最小,最小值为2√15
(1)
2mx-y-8m-3=0
2m(x-4)-y-3=0
由题目易知,直线l过一定点P(4,-3)
将定点P(4,-3)代入圆方程左式:x^2+y^2-6x+12y+20中,得
4^2+(-3)^2-6*4+12*(-3)+20 = -15 < 0
说明定点P(4,-3)在圆C内部.
所以,不论m为何实数,直线l与圆总相交.
证毕.
2.将圆方程化为标准形式得:
(x-3)^2 + (y+6)^2 = 5^2
易知,圆心为O(3,-6),半径为r=5
要使截得的弦长最短,根据数形结合,易知,当点P(4,-3)为相交弦中点时所截得弦长最短.
因弦心距|OP| = √[(3-4)^2+(-6+3)^2] = √10
所以所截得最短弦长为 d = 2√(25-10) = 2√15
而此时弦所在的直线斜率为
k = -1/k' = -1/3
即 2m = -1/3
所以m = -1/6
综上,知,m = -1/6时,l被圆C截得弦最小,最小值为2√15
看了 已知2mx-y-8m+3=0...的网友还看了以下:
直线过圆,求两交点的长,直线参数方程的几何意义是什么直线参数x=1+2t.y=3+4t将直线的x和 2020-04-08 …
已知圆C:x平方+(y-1)=25,直线l:mx-y+1-4m=01求证:对m∈R,直线l与圆C总 2020-04-27 …
如图,圆G过坐标原点,交y轴于点A,交x轴于点B,点C为圆上一点,且OC平分∠AOB交AB于点F. 2020-05-13 …
如图,在平面直角坐标系中,△ABC的顶点A(-3,0),B(0,3),AD⊥BC于D交y轴于点E( 2020-05-16 …
二次函数与一元二次方程.1、抛物线y=x^+3x+2交X轴于A、B交y轴于C,顶点是P,求S三角形 2020-05-16 …
如图,在直角坐标系中,直线y=-52x+5与x轴交于B点,与y轴交于C点,直线AC经过点D(-2, 2020-06-06 …
如图平面直角坐标系中,抛物线y=-x2+x+2交x轴于A、B两点,交y轴于点C.(1)求证:△AB 2020-06-14 …
如图1,B(-1,0),D(0,2),经过点C(3,0)的直线EC交直线BD于A,交y轴于E,使A 2020-06-23 …
如图,在平面直角坐标系xOy中,以点O为圆心的圆分别交x轴的正半轴于点M,交y轴的正半轴于点N.劣 2020-07-31 …
(2014•常德三模)已知抛物线y=ax2-2x+c与x轴交于A(-1,0)、B两点,与y轴交于点C 2020-11-01 …