早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,点A,B,C在一条直线上,△ABD,△BCE均为等边三角形,连接AE和CD,AE分别交CD,BD于点M,P,CD交BE于点Q,连接PQ,BM,下面结论:①△ABE≌△DBC;②∠DMA=60°;③△BPQ为等边三角形;④MB

题目详情

如图,点A,B,C在一条直线上,△ABD,△BCE均为等边三角形,连接AE和CD,AE分别交CD,BD于点M,P,CD交BE于点Q,连接PQ,BM,下面结论:
①△ABE≌△DBC;②∠DMA=60°;③△BPQ为等边三角形;④MB平分∠AMC,
其中结论正确的有(  )
作业搜

A. 1个

B. 2个

C. 3个

D. 4个

▼优质解答
答案和解析
∵△ABD、△BCE为等边三角形,
∴AB=DB,∠ABD=∠CBE=60°,BE=BC,
∴∠ABE=∠DBC,∠PBQ=60°,
在△ABE和△DBC中,
AB=DB 
∠ABE=∠DBC 
BE=BC 

∴△ABE≌△DBC(SAS),
∴①正确;
∵△ABE≌△DBC,
∴∠BAE=∠BDC,
∵∠BDC+∠BCD=180°-60°-60°=60°,
∴∠DMA=∠BAE+∠BCD=∠BDC+∠BCD=60°,
∴②正确;
在△ABP和△DBQ中,
∠BAP=∠BDQ 
AB=DB 
∠ABP=∠DBQ=60° 

∴△ABP≌△DBQ(ASA),
∴BP=BQ,
∴△BPQ为等边三角形,
∴③正确;
∵∠DMA=60°,
∴∠AMC=120°,
∴∠AMC+∠PBQ=180°,
∴P、B、Q、M四点共圆,
∵BP=BQ,
BP
=
BQ

∴∠BMP=∠BMQ,
即MB平分∠AMC;
∴④正确;
综上所述:正确的结论有4个;
故选:D.