早教吧作业答案频道 -->数学-->
y''+(y')²=e^(-y)/2的通解
题目详情
y''+(y')²=e^(-y)/2的通解
▼优质解答
答案和解析
∵y''+(y')^2=e^(-y)/2
==>y'dy'/dy+(y')^2=e^(-y)/2 (y"=y'dy'/dy)
==>2y'dy'+2(y')^2dy=e^(-y)dy
==>2y'e^(2y)dy'+2(y')^2e^(2y)dy=e^ydy (等式两端同乘e^(2y))
==>e^(2y)d((y')^2)+(y')^2d(e^(2y))=d(e^y)
==>d((y')^2e^(2y))=d(e^y)
==>(y')^2e^(2y)=e^y+C0 (C0是任意常数)
==>y'e^y=±√(e^y+C0) (等式两端开平方)
==>e^ydy/dx=±√(e^y+C0)
==>e^ydy=±√(e^y+C0)dx
==>e^ydy/√(e^y+C0)=±dx
==>d(e^y+C0)/√(e^y+C0)=±dx
==>√(e^y+C0)=C1±x/2 (C1是任意常数)
==>e^y+C0=(C1±x/2)^2 (等式两端取平方)
==>e^y=(C1±x/2)^2-C0
==>e^y=x^2/4+C1x+(C1^2-C0)
==>e^y=x^2/4+C1x+C2 (令C2=C1^2-C0,则C2也是任意常数)
∴原方程的通解是e^y=x^2/4+C1x+C2.
==>y'dy'/dy+(y')^2=e^(-y)/2 (y"=y'dy'/dy)
==>2y'dy'+2(y')^2dy=e^(-y)dy
==>2y'e^(2y)dy'+2(y')^2e^(2y)dy=e^ydy (等式两端同乘e^(2y))
==>e^(2y)d((y')^2)+(y')^2d(e^(2y))=d(e^y)
==>d((y')^2e^(2y))=d(e^y)
==>(y')^2e^(2y)=e^y+C0 (C0是任意常数)
==>y'e^y=±√(e^y+C0) (等式两端开平方)
==>e^ydy/dx=±√(e^y+C0)
==>e^ydy=±√(e^y+C0)dx
==>e^ydy/√(e^y+C0)=±dx
==>d(e^y+C0)/√(e^y+C0)=±dx
==>√(e^y+C0)=C1±x/2 (C1是任意常数)
==>e^y+C0=(C1±x/2)^2 (等式两端取平方)
==>e^y=(C1±x/2)^2-C0
==>e^y=x^2/4+C1x+(C1^2-C0)
==>e^y=x^2/4+C1x+C2 (令C2=C1^2-C0,则C2也是任意常数)
∴原方程的通解是e^y=x^2/4+C1x+C2.
看了 y''+(y')²=e^(-...的网友还看了以下:
求微分方程y''-3y'+2y=2e^x满足y|x=0 =1,dy/dx|x=0 =0的特解对应的 2020-05-17 …
y''=f(y)型微分方程的通解如y''=e^2y的通解 2020-06-02 …
求教可分离变量的微分方程求方程Y'+3Y=0的通解DY/DX=-3YDY/Y=-3DXLN{Y}= 2020-06-05 …
求通解或特解:y''-8y'+16y=e^(4x),y=(0)=0,y'(0)=1.我求出特解为x 2020-07-19 …
求微分方程y''-y=2xe^x的通解书上的做法是先求出对应齐次方程的通解,然后设特解为y*=x( 2020-07-31 …
设二阶常系数线性微分方程y″+αy′+βy=γe-x的一个特解为y=ex+(1+x)e-x,则此方 2020-07-31 …
(e的x+y次方减去e的X次方)dx+(ex+y次方+e的y次方)dy=0的通解注意有括号.. 2020-07-31 …
高数达人请进!微分方程问题已知:微分方程y'+ay=f(x)a>0得到通解为y(x)=e^(-ax 2020-08-02 …
二阶微分方程求解题目2xy''=y'令p=y',则y''=p'=>2xp'=p=>2*dp/p=dx 2020-11-16 …
一题关於方程组解值和通解问题设下列方程组(E)有非零解:{X-Y+Z=0(E){3X+Y-3Z=0{ 2020-12-24 …