早教吧作业答案频道 -->数学-->
矩形ABCD中,AB=4,BC=3,沿AC将矩形ABCD折成一个直二面角B-AC-D,则四面体ABCD的体积为245245.
题目详情
24 |
5 |
24 |
5 |
24 |
5 |
24 |
5 |
24 |
5 |
24 |
5 |
▼优质解答
答案和解析
作BO⊥AC于O;
∵是直二面角B-AC-D
∴BO⊥平面ADC;
在△ABC,AB=4,BC=3⇒AC=5;
∵
BO•AC=
AB•BC⇒BO=
.
∴VB-ACD=
•BO•S△ADC
=
×
×
×3×4
=
.
故答案为:
.
1 1 12 2 2BO•AC=
AB•BC⇒BO=
.
∴VB-ACD=
•BO•S△ADC
=
×
×
×3×4
=
.
故答案为:
.
1 1 12 2 2AB•BC⇒BO=
.
∴VB-ACD=
•BO•S△ADC
=
×
×
×3×4
=
.
故答案为:
.
12 12 125 5 5.
∴VB-ACDB-ACD=
•BO•S△ADC
=
×
×
×3×4
=
.
故答案为:
.
1 1 13 3 3•BO•S△ADC△ADC
=
×
×
×3×4
=
.
故答案为:
.
1 1 13 3 3×
×
×3×4
=
.
故答案为:
.
12 12 125 5 5×
×3×4
=
.
故答案为:
.
1 1 12 2 2×3×4
=
.
故答案为:
.
24 24 245 5 5.
故答案为:
.
24 24 245 5 5.

∵是直二面角B-AC-D
∴BO⊥平面ADC;
在△ABC,AB=4,BC=3⇒AC=5;
∵
1 |
2 |
1 |
2 |
12 |
5 |
∴VB-ACD=
1 |
3 |
=
1 |
3 |
12 |
5 |
1 |
2 |
=
24 |
5 |
故答案为:
24 |
5 |
1 |
2 |
1 |
2 |
12 |
5 |
∴VB-ACD=
1 |
3 |
=
1 |
3 |
12 |
5 |
1 |
2 |
=
24 |
5 |
故答案为:
24 |
5 |
1 |
2 |
12 |
5 |
∴VB-ACD=
1 |
3 |
=
1 |
3 |
12 |
5 |
1 |
2 |
=
24 |
5 |
故答案为:
24 |
5 |
12 |
5 |
∴VB-ACDB-ACD=
1 |
3 |
=
1 |
3 |
12 |
5 |
1 |
2 |
=
24 |
5 |
故答案为:
24 |
5 |
1 |
3 |
=
1 |
3 |
12 |
5 |
1 |
2 |
=
24 |
5 |
故答案为:
24 |
5 |
1 |
3 |
12 |
5 |
1 |
2 |
=
24 |
5 |
故答案为:
24 |
5 |
12 |
5 |
1 |
2 |
=
24 |
5 |
故答案为:
24 |
5 |
1 |
2 |
=
24 |
5 |
故答案为:
24 |
5 |
24 |
5 |
故答案为:
24 |
5 |
24 |
5 |
看了 矩形ABCD中,AB=4,B...的网友还看了以下:
已知点a(a-1,-2),b(-3,b+1),求a,b的值.急求!(1)点A与点B关于y轴对称;( 2020-04-05 …
就几题,1.计算(x^2+5x+7)/(x+2)-(x^2+7x+11)/(x+3)2.(b^3/ 2020-04-27 …
解基本的二元三次方程组.-a^3=b/2……①-b^3=a/2……②答案是a=负二分之根号二;b= 2020-05-21 …
一元二次方程ax方+bx+c=0有一个根x=-1,则下列等式一定成立的是A.a+b+c=0B.a- 2020-07-09 …
计算:(a/a^3+a^b+ab^2+b^3)(b/a^3-a^2b+ab^2-b^3)+(1/a 2020-07-21 …
4道初二整式的小题1.若(a+b)^0无意义,则a,b的关系是.2.计算:27^8÷9^7÷81^ 2020-07-30 …
先去括号在合并同类项:-4x^2+[5x-8x^2-(-13x^2+4x)+2]-1先化简在求值: 2020-08-01 …
如图,在下面直角坐标系中,已知A(0,a),B(b,0),C(3,c)三点,其中a,b,c满足关系式 2020-11-03 …
已知:n=1a^2-b^2=(a-b)(a+b);a^3-b^3=(a-b)(a^2+ab+b^2) 2020-12-23 …
第一题9倍根号a-2倍根号a方x-3倍根号a分之b方-6倍根号9分之b方x已知(b小于0)第二题若a 2020-12-31 …