早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知w^2+x^2+y^2+z^2+f^2=16求f=8-w-x-y-z的最大值

题目详情
已知w^2+x^2+y^2+z^2+f^2=16求f=8-w-x-y-z的最大值
▼优质解答
答案和解析
依题意有f^2=16-(x^2+y^2+z^2+w^2).1
若f=8-w-x-y-z 则2f=16-2w-2x-2y-2z.2
1式加上2式有
f^2+2f=32-(w^2+2w+x^2+2x+y^2+2y+z^2+2z)
=32-[(w+1)^2+(x+1)^2+(y+1)^2+(z+1)^2]+4
所以f^2+2f-36= -【(w+1)^2+(x+1)^2+(y+1)^2+(z+1)^2】