早教吧作业答案频道 -->其他-->
已知双曲线x2a2-y2b2=1(a>0,b>0)的右顶点为A,右焦点为F,右准线与轴交于点B,且与一条渐近线交于点C,点O为坐标原点,又|OA|=2|OB|,OA•OC=2过点F的直线与双曲线右支交于点M、N,点P为点M关
题目详情
已知双曲线
-
=1(a>0,b>0)的右顶点为A,右焦点为F,右准线与轴交于点B,且与一条渐近线交于点C,点O为坐标原点,又|OA|=2|OB|,
•
=2过点F的直线与双曲线右支交于点M、N,点P为点M关于轴的对称点.
(Ⅰ)求双曲线的方程;
(Ⅱ)证明:B、P、N三点共线.
-
=1(a>0,b>0)的右顶点为A,右焦点为F,右准线与轴交于点B,且与一条渐近线交于点C,点O为坐标原点,又|OA|=2|OB|,
•
=2过点F的直线与双曲线右支交于点M、N,点P为点M关于轴的对称点.
(Ⅰ)求双曲线的方程;
(Ⅱ)证明:B、P、N三点共线.
x2 x2 x2x22a2 a2 a2a22
y2 y2 y2y22b2 b2 b2b22
•
=2过点F的直线与双曲线右支交于点M、N,点P为点M关于轴的对称点.
(Ⅰ)求双曲线的方程;
(Ⅱ)证明:B、P、N三点共线.
OA OA
OC OC
x2 |
a2 |
y2 |
b2 |
OA |
OC |
(Ⅰ)求双曲线的方程;
(Ⅱ)证明:B、P、N三点共线.
x2 |
a2 |
y2 |
b2 |
OA |
OC |
(Ⅰ)求双曲线的方程;
(Ⅱ)证明:B、P、N三点共线.
x2 |
a2 |
y2 |
b2 |
OA |
OC |
(Ⅰ)求双曲线的方程;
(Ⅱ)证明:B、P、N三点共线.
OA |
OC |
▼优质解答
答案和解析
(Ⅰ)A(a,0),B (
,0)
由|
|=2|
|⇒
=
(1)
由
⇒C(
,
),
∴
•
=2⇒
=2(2)
解(1)(2)得a=2,c=4
双曲线方程为
-
=1
(Ⅱ)由(Ⅰ)得,
B(1,0),F(4,0)
设直线l的方程为x=ty+4
⇒(3t2-1)y2+24ty+36=0
设M(x1,y1),N(x2,y2),
则P(x1,-y1)∴
∴
=(x1-1,-y1),
=(x2-1,y2)(x1-1)y2-(x2-1)(-y1)
=x1y2+x2y1-(y1+y2)
=(ty1+4)y2+(ty2+4)y1-(y1+y2)
=2ty1y2+3(y1+y2)=2t
+3
=0
所以向量
与
共线,
即B、P、N三点共线. (
a2 a2 a22c c c,0)
由|
|=2|
|⇒
=
(1)
由
⇒C(
,
),
∴
•
=2⇒
=2(2)
解(1)(2)得a=2,c=4
双曲线方程为
-
=1
(Ⅱ)由(Ⅰ)得,
B(1,0),F(4,0)
设直线l的方程为x=ty+4
⇒(3t2-1)y2+24ty+36=0
设M(x1,y1),N(x2,y2),
则P(x1,-y1)∴
∴
=(x1-1,-y1),
=(x2-1,y2)(x1-1)y2-(x2-1)(-y1)
=x1y2+x2y1-(y1+y2)
=(ty1+4)y2+(ty2+4)y1-(y1+y2)
=2ty1y2+3(y1+y2)=2t
+3
=0
所以向量
与
共线,
即B、P、N三点共线. |
OA OA OA|=2|
OB OB OB|⇒
a2 a2 a22c c c=
a a a2 2 2(1)
由
⇒C(
,
),
∴
•
=2⇒
=2(2)
解(1)(2)得a=2,c=4
双曲线方程为
-
=1
(Ⅱ)由(Ⅰ)得,
B(1,0),F(4,0)
设直线l的方程为x=ty+4
⇒(3t2-1)y2+24ty+36=0
设M(x1,y1),N(x2,y2),
则P(x1,-y1)∴
∴
=(x1-1,-y1),
=(x2-1,y2)(x1-1)y2-(x2-1)(-y1)
=x1y2+x2y1-(y1+y2)
=(ty1+4)y2+(ty2+4)y1-(y1+y2)
=2ty1y2+3(y1+y2)=2t
+3
=0
所以向量
与
共线,
即B、P、N三点共线.
x=
x=
x=
a2 a2 a22c c cy=
x y=
x y=
b b ba a ax ⇒C(
a2 a2 a22c c c,
ab ab abc c c),
∴
•
=2⇒
=2(2)
解(1)(2)得a=2,c=4
双曲线方程为
-
=1
(Ⅱ)由(Ⅰ)得,
B(1,0),F(4,0)
设直线l的方程为x=ty+4
⇒(3t2-1)y2+24ty+36=0
设M(x1,y1),N(x2,y2),
则P(x1,-y1)∴
∴
=(x1-1,-y1),
=(x2-1,y2)(x1-1)y2-(x2-1)(-y1)
=x1y2+x2y1-(y1+y2)
=(ty1+4)y2+(ty2+4)y1-(y1+y2)
=2ty1y2+3(y1+y2)=2t
+3
=0
所以向量
与
共线,
即B、P、N三点共线.
OA OA OA•
OC OC OC=2⇒
a2 a2 a22c c c=2(2)
解(1)(2)得a=2,c=4
双曲线方程为
-
=1
(Ⅱ)由(Ⅰ)得,
B(1,0),F(4,0)
设直线l的方程为x=ty+4
⇒(3t2-1)y2+24ty+36=0
设M(x1,y1),N(x2,y2),
则P(x1,-y1)∴
∴
=(x1-1,-y1),
=(x2-1,y2)(x1-1)y2-(x2-1)(-y1)
=x1y2+x2y1-(y1+y2)
=(ty1+4)y2+(ty2+4)y1-(y1+y2)
=2ty1y2+3(y1+y2)=2t
+3
=0
所以向量
与
共线,
即B、P、N三点共线.
x2 x2 x224 4 4-
y2 y2 y2212 12 12=1
(Ⅱ)由(Ⅰ)得,
B(1,0),F(4,0)
设直线l的方程为x=ty+4
⇒(3t2-1)y2+24ty+36=0
设M(x1,y1),N(x2,y2),
则P(x1,-y1)∴
∴
=(x1-1,-y1),
=(x2-1,y2)(x1-1)y2-(x2-1)(-y1)
=x1y2+x2y1-(y1+y2)
=(ty1+4)y2+(ty2+4)y1-(y1+y2)
=2ty1y2+3(y1+y2)=2t
+3
=0
所以向量
与
共线,
即B、P、N三点共线.
-
=1
-
=1
x2 x2 x224 4 4-
y2 y2 y2212 12 12=1x=ty+4 x=ty+4 x=ty+4 ⇒(3t2-1)y2+24ty+36=0
设M(x1,y1),N(x2,y2),
则P(x1,-y1)∴
∴
=(x1-1,-y1),
=(x2-1,y2)(x1-1)y2-(x2-1)(-y1)
=x1y2+x2y1-(y1+y2)
=(ty1+4)y2+(ty2+4)y1-(y1+y2)
=2ty1y2+3(y1+y2)=2t
+3
=0
所以向量
与
共线,
即B、P、N三点共线. 2-1)y2+24ty+36=0
设M(x1,y1),N(x2,y2),
则P(x1,-y1)∴
∴
=(x1-1,-y1),
=(x2-1,y2)(x1-1)y2-(x2-1)(-y1)
=x1y2+x2y1-(y1+y2)
=(ty1+4)y2+(ty2+4)y1-(y1+y2)
=2ty1y2+3(y1+y2)=2t
+3
=0
所以向量
与
共线,
即B、P、N三点共线. 2+24ty+36=0
设M(x11,y11),N(x22,y22),
则P(x1,-y1)∴
∴
=(x1-1,-y1),
=(x2-1,y2)(x1-1)y2-(x2-1)(-y1)
=x1y2+x2y1-(y1+y2)
=(ty1+4)y2+(ty2+4)y1-(y1+y2)
=2ty1y2+3(y1+y2)=2t
+3
=0
所以向量
与
共线,
即B、P、N三点共线. P(x1,-y1)∴
∴
=(x1-1,-y1),
=(x2-1,y2)(x1-1)y2-(x2-1)(-y1)
=x1y2+x2y1-(y1+y2)
=(ty1+4)y2+(ty2+4)y1-(y1+y2)
=2ty1y2+3(y1+y2)=2t
+3
=0
所以向量
与
共线,
即B、P、N三点共线. 1,-y1)∴
∴
=(x1-1,-y1),
=(x2-1,y2)(x1-1)y2-(x2-1)(-y1)
=x1y2+x2y1-(y1+y2)
=(ty1+4)y2+(ty2+4)y1-(y1+y2)
=2ty1y2+3(y1+y2)=2t
+3
=0
所以向量
与
共线,
即B、P、N三点共线. 1)∴
y1+y2=
y1+y2=
y1+y2=
1+y2=
2=
-24t -24t -24t3t2-1 3t2-1 3t2-12-1y1y2=
y1y2=
y1y2=
1y2=
2=
36 36 363t2-1 3t2-1 3t2-12-1
∴
=(x1-1,-y1),
=(x2-1,y2)(x1-1)y2-(x2-1)(-y1)
=x1y2+x2y1-(y1+y2)
=(ty1+4)y2+(ty2+4)y1-(y1+y2)
=2ty1y2+3(y1+y2)=2t
+3
=0
所以向量
与
共线,
即B、P、N三点共线.
BP BP BP=(x1-1,-y1),
=(x2-1,y2)(x1-1)y2-(x2-1)(-y1)
=x1y2+x2y1-(y1+y2)
=(ty1+4)y2+(ty2+4)y1-(y1+y2)
=2ty1y2+3(y1+y2)=2t
+3
=0
所以向量
与
共线,
即B、P、N三点共线. 1-1,-y1),
=(x2-1,y2)(x1-1)y2-(x2-1)(-y1)
=x1y2+x2y1-(y1+y2)
=(ty1+4)y2+(ty2+4)y1-(y1+y2)
=2ty1y2+3(y1+y2)=2t
+3
=0
所以向量
与
共线,
即B、P、N三点共线. 1),
BN BN BN=(x2-1,y2)(x1-1)y2-(x2-1)(-y1)
=x1y2+x2y1-(y1+y2)
=(ty1+4)y2+(ty2+4)y1-(y1+y2)
=2ty1y2+3(y1+y2)=2t
+3
=0
所以向量
与
共线,
即B、P、N三点共线. 2-1,y2)(x1-1)y2-(x2-1)(-y1)
=x1y2+x2y1-(y1+y2)
=(ty1+4)y2+(ty2+4)y1-(y1+y2)
=2ty1y2+3(y1+y2)=2t
+3
=0
所以向量
与
共线,
即B、P、N三点共线. 2)(x11-1)y22-(x22-1)(-y11)
=x11y22+x22y11-(y11+y22)
=(ty11+4)y22+(ty22+4)y11-(y11+y22)
=2ty1y2+3(y1+y2)=2t
+3
=0
所以向量
与
共线,
即B、P、N三点共线. 2ty1y2+3(y1+y2)=2t
+3
=0
所以向量
与
共线,
即B、P、N三点共线. 1y2+3(y1+y2)=2t
+3
=0
所以向量
与
共线,
即B、P、N三点共线. 2+3(y1+y2)=2t
+3
=0
所以向量
与
共线,
即B、P、N三点共线. 1+y2)=2t
+3
=0
所以向量
与
共线,
即B、P、N三点共线. 2)=2t
36 36 363t2-1 3t2-1 3t2-12-1+3
-24 -24 -243t2-1 3t2-1 3t2-12-1=0
所以向量
与
共线,
即B、P、N三点共线.
BP BP BP与
共线,
即B、P、N三点共线.
BN BN BN共线,
即B、P、N三点共线.
a2 |
c |
由|
OA |
OB |
a2 |
c |
a |
2 |
由
|
a2 |
c |
ab |
c |
∴
OA |
OC |
a2 |
c |
解(1)(2)得a=2,c=4
双曲线方程为
x2 |
4 |
y2 |
12 |
(Ⅱ)由(Ⅰ)得,
B(1,0),F(4,0)
设直线l的方程为x=ty+4
|
设M(x1,y1),N(x2,y2),
则P(x1,-y1)∴
|
∴
BP |
BN |
=x1y2+x2y1-(y1+y2)
=(ty1+4)y2+(ty2+4)y1-(y1+y2)
=2ty1y2+3(y1+y2)=2t
36 |
3t2-1 |
-24 |
3t2-1 |
所以向量
BP |
BN |
即B、P、N三点共线. (
a2 |
c |
由|
OA |
OB |
a2 |
c |
a |
2 |
由
|
a2 |
c |
ab |
c |
∴
OA |
OC |
a2 |
c |
解(1)(2)得a=2,c=4
双曲线方程为
x2 |
4 |
y2 |
12 |
(Ⅱ)由(Ⅰ)得,
B(1,0),F(4,0)
设直线l的方程为x=ty+4
|
设M(x1,y1),N(x2,y2),
则P(x1,-y1)∴
|
∴
BP |
BN |
=x1y2+x2y1-(y1+y2)
=(ty1+4)y2+(ty2+4)y1-(y1+y2)
=2ty1y2+3(y1+y2)=2t
36 |
3t2-1 |
-24 |
3t2-1 |
所以向量
BP |
BN |
即B、P、N三点共线. |
OA |
OB |
a2 |
c |
a |
2 |
由
|
a2 |
c |
ab |
c |
∴
OA |
OC |
a2 |
c |
解(1)(2)得a=2,c=4
双曲线方程为
x2 |
4 |
y2 |
12 |
(Ⅱ)由(Ⅰ)得,
B(1,0),F(4,0)
设直线l的方程为x=ty+4
|
设M(x1,y1),N(x2,y2),
则P(x1,-y1)∴
|
∴
BP |
BN |
=x1y2+x2y1-(y1+y2)
=(ty1+4)y2+(ty2+4)y1-(y1+y2)
=2ty1y2+3(y1+y2)=2t
36 |
3t2-1 |
-24 |
3t2-1 |
所以向量
BP |
BN |
即B、P、N三点共线.
|
x=
| ||
y=
|
x=
| ||
y=
|
x=
| ||
y=
|
a2 |
c |
a2 |
c |
a2 |
c |
b |
a |
b |
a |
b |
a |
a2 |
c |
ab |
c |
∴
OA |
OC |
a2 |
c |
解(1)(2)得a=2,c=4
双曲线方程为
x2 |
4 |
y2 |
12 |
(Ⅱ)由(Ⅰ)得,
B(1,0),F(4,0)
设直线l的方程为x=ty+4
|
设M(x1,y1),N(x2,y2),
则P(x1,-y1)∴
|
∴
BP |
BN |
=x1y2+x2y1-(y1+y2)
=(ty1+4)y2+(ty2+4)y1-(y1+y2)
=2ty1y2+3(y1+y2)=2t
36 |
3t2-1 |
-24 |
3t2-1 |
所以向量
BP |
BN |
即B、P、N三点共线.
OA |
OC |
a2 |
c |
解(1)(2)得a=2,c=4
双曲线方程为
x2 |
4 |
y2 |
12 |
(Ⅱ)由(Ⅰ)得,
B(1,0),F(4,0)
设直线l的方程为x=ty+4
|
设M(x1,y1),N(x2,y2),
则P(x1,-y1)∴
|
∴
BP |
BN |
=x1y2+x2y1-(y1+y2)
=(ty1+4)y2+(ty2+4)y1-(y1+y2)
=2ty1y2+3(y1+y2)=2t
36 |
3t2-1 |
-24 |
3t2-1 |
所以向量
BP |
BN |
即B、P、N三点共线.
x2 |
4 |
y2 |
12 |
(Ⅱ)由(Ⅰ)得,
B(1,0),F(4,0)
设直线l的方程为x=ty+4
|
设M(x1,y1),N(x2,y2),
则P(x1,-y1)∴
|
∴
BP |
BN |
=x1y2+x2y1-(y1+y2)
=(ty1+4)y2+(ty2+4)y1-(y1+y2)
=2ty1y2+3(y1+y2)=2t
36 |
3t2-1 |
-24 |
3t2-1 |
所以向量
BP |
BN |
即B、P、N三点共线.
|
| ||||
x=ty+4 |
| ||||
x=ty+4 |
| ||||
x=ty+4 |
x2 |
4 |
y2 |
12 |
x2 |
4 |
y2 |
12 |
x2 |
4 |
y2 |
12 |
设M(x1,y1),N(x2,y2),
则P(x1,-y1)∴
|
∴
BP |
BN |
=x1y2+x2y1-(y1+y2)
=(ty1+4)y2+(ty2+4)y1-(y1+y2)
=2ty1y2+3(y1+y2)=2t
36 |
3t2-1 |
-24 |
3t2-1 |
所以向量
BP |
BN |
即B、P、N三点共线. 2-1)y2+24ty+36=0
设M(x1,y1),N(x2,y2),
则P(x1,-y1)∴
|
∴
BP |
BN |
=x1y2+x2y1-(y1+y2)
=(ty1+4)y2+(ty2+4)y1-(y1+y2)
=2ty1y2+3(y1+y2)=2t
36 |
3t2-1 |
-24 |
3t2-1 |
所以向量
BP |
BN |
即B、P、N三点共线. 2+24ty+36=0
设M(x11,y11),N(x22,y22),
则P(x1,-y1)∴
|
∴
BP |
BN |
=x1y2+x2y1-(y1+y2)
=(ty1+4)y2+(ty2+4)y1-(y1+y2)
=2ty1y2+3(y1+y2)=2t
36 |
3t2-1 |
-24 |
3t2-1 |
所以向量
BP |
BN |
即B、P、N三点共线. P(x1,-y1)∴
|
∴
BP |
BN |
=x1y2+x2y1-(y1+y2)
=(ty1+4)y2+(ty2+4)y1-(y1+y2)
=2ty1y2+3(y1+y2)=2t
36 |
3t2-1 |
-24 |
3t2-1 |
所以向量
BP |
BN |
即B、P、N三点共线. 1,-y1)∴
|
∴
BP |
BN |
=x1y2+x2y1-(y1+y2)
=(ty1+4)y2+(ty2+4)y1-(y1+y2)
=2ty1y2+3(y1+y2)=2t
36 |
3t2-1 |
-24 |
3t2-1 |
所以向量
BP |
BN |
即B、P、N三点共线. 1)∴
|
y1+y2=
| ||
y1y2=
|
y1+y2=
| ||
y1y2=
|
y1+y2=
| ||
y1y2=
|
-24t |
3t2-1 |
-24t |
3t2-1 |
-24t |
3t2-1 |
-24t |
3t2-1 |
-24t |
3t2-1 |
36 |
3t2-1 |
36 |
3t2-1 |
36 |
3t2-1 |
36 |
3t2-1 |
36 |
3t2-1 |
∴
BP |
BN |
=x1y2+x2y1-(y1+y2)
=(ty1+4)y2+(ty2+4)y1-(y1+y2)
=2ty1y2+3(y1+y2)=2t
36 |
3t2-1 |
-24 |
3t2-1 |
所以向量
BP |
BN |
即B、P、N三点共线.
BP |
BN |
=x1y2+x2y1-(y1+y2)
=(ty1+4)y2+(ty2+4)y1-(y1+y2)
=2ty1y2+3(y1+y2)=2t
36 |
3t2-1 |
-24 |
3t2-1 |
所以向量
BP |
BN |
即B、P、N三点共线. 1-1,-y1),
BN |
=x1y2+x2y1-(y1+y2)
=(ty1+4)y2+(ty2+4)y1-(y1+y2)
=2ty1y2+3(y1+y2)=2t
36 |
3t2-1 |
-24 |
3t2-1 |
所以向量
BP |
BN |
即B、P、N三点共线. 1),
BN |
=x1y2+x2y1-(y1+y2)
=(ty1+4)y2+(ty2+4)y1-(y1+y2)
=2ty1y2+3(y1+y2)=2t
36 |
3t2-1 |
-24 |
3t2-1 |
所以向量
BP |
BN |
即B、P、N三点共线. 2-1,y2)(x1-1)y2-(x2-1)(-y1)
=x1y2+x2y1-(y1+y2)
=(ty1+4)y2+(ty2+4)y1-(y1+y2)
=2ty1y2+3(y1+y2)=2t
36 |
3t2-1 |
-24 |
3t2-1 |
所以向量
BP |
BN |
即B、P、N三点共线. 2)(x11-1)y22-(x22-1)(-y11)
=x11y22+x22y11-(y11+y22)
=(ty11+4)y22+(ty22+4)y11-(y11+y22)
=2ty1y2+3(y1+y2)=2t
36 |
3t2-1 |
-24 |
3t2-1 |
所以向量
BP |
BN |
即B、P、N三点共线. 2ty1y2+3(y1+y2)=2t
36 |
3t2-1 |
-24 |
3t2-1 |
所以向量
BP |
BN |
即B、P、N三点共线. 1y2+3(y1+y2)=2t
36 |
3t2-1 |
-24 |
3t2-1 |
所以向量
BP |
BN |
即B、P、N三点共线. 2+3(y1+y2)=2t
36 |
3t2-1 |
-24 |
3t2-1 |
所以向量
BP |
BN |
即B、P、N三点共线. 1+y2)=2t
36 |
3t2-1 |
-24 |
3t2-1 |
所以向量
BP |
BN |
即B、P、N三点共线. 2)=2t
36 |
3t2-1 |
-24 |
3t2-1 |
所以向量
BP |
BN |
即B、P、N三点共线.
BP |
BN |
即B、P、N三点共线.
BN |
即B、P、N三点共线.
看了 已知双曲线x2a2-y2b2...的网友还看了以下:
设函数f(x)=x^2-alnx与g(x)=(1/a)x-根号x的图像分别交直线x=1于点A,B, 2020-04-05 …
x^2-y^2=a^2右准线交实轴于P,过P直线交双曲线A、B,过右焦点F引直线垂直AB交双曲线于 2020-04-08 …
已知曲线C:x|x|a2-y|y|b2=1(a>b>0),下列叙述中正确的是()A.垂直于x轴的直 2020-05-15 …
函数数学题.设f(x)=x^2-alnx g(x)=x-a根号x的图像分别交直线x+1于点A,B, 2020-05-15 …
已知双曲线x^2/a2-y^2/b^2=1(a>0,b>0)的左右两个顶点分别为A,B1,已知双曲 2020-05-17 …
过双曲线x方比a方—y方比b方=1的右焦点f做一条垂直于x轴的直线,交双曲线于ab两点若线断ab的 2020-05-20 …
双曲线问题(与准线有关).设A为双曲线x^2/16-y^2/9=1右支上一动点,F为该双曲线的右焦 2020-06-07 …
关于元散曲的一道题关于对元散曲叙述正确的是()A.元散曲又称“长短句”B.元时汉族文人用散曲抒发愁 2020-06-09 …
高考数学问题:过双曲线一焦点且垂直于双曲线实轴的直线交双曲线于A,B两点1,过双曲线一焦点且垂直于 2020-07-30 …
1、三个矢量a,b,c共面的充要条件是().A.(a*b)*c=0B.a.(b*c)=0C.(a. 2020-07-31 …