早教吧作业答案频道 -->数学-->
已知在△ABC中,∠ABC=90°,AB=3,BC=4.点Q是线段AC上的一个动点,过点Q作AC的垂线交线段AB(如图1)或线段AB的延长线(如图2)于点P.(1)当点P在线段AB上时,求证:△AQP∽△ABC;(2)当
题目详情
已知在△ABC中,∠ABC=90°,AB=3,BC=4.点Q是线段AC上的一个动点,过点Q作AC的垂线交线段AB(如图1)或线段AB的延长线(如图2)于点P.
(1)当点P在线段AB上时,求证:△AQP∽△ABC;
(2)当△PQB为等腰三角形时,求AP的长.

(1)当点P在线段AB上时,求证:△AQP∽△ABC;
(2)当△PQB为等腰三角形时,求AP的长.
▼优质解答
答案和解析
(1)证明:∵PQ⊥AQ,
∴∠AQP=90°=∠ABC,
在△APQ与△ABC中,
∵∠AQP=90°=∠ABC,∠A=∠A,
∴△AQP∽△ABC.
(2) 在Rt△ABC中,AB=3,BC=4,由勾股定理得:AC=5.
∵∠QBP为钝角,
∴当△PQB为等腰三角形时,
(I)当点P在线段AB上时,如题图1所示.
∵∠QBP为钝角,
∴当△PQB为等腰三角形时,只可能是PB=PQ,
由(1)可知,△AQP∽△ABC,
∴
=
,即
=
,解得:PB=
,
∴AP=AB-PB=3-
=
;
(II)当点P在线段AB的延长线上时,如题图2所示.
∵∠QBP为钝角,
∴当△PQB为等腰三角形时,只可能是PB=BQ.
∵BP=BQ,∴∠BQP=∠P,
∵∠BQP+∠AQB=90°,∠A+∠P=90°,
∴∠AQB=∠A,
∴BQ=AB,
∴AB=BP,点B为线段AP中点,
∴AP=2AB=2×3=6.
综上所述,当△PQB为等腰三角形时,AP的长为
或6.
∴∠AQP=90°=∠ABC,
在△APQ与△ABC中,
∵∠AQP=90°=∠ABC,∠A=∠A,
∴△AQP∽△ABC.
(2) 在Rt△ABC中,AB=3,BC=4,由勾股定理得:AC=5.
∵∠QBP为钝角,
∴当△PQB为等腰三角形时,
(I)当点P在线段AB上时,如题图1所示.
∵∠QBP为钝角,
∴当△PQB为等腰三角形时,只可能是PB=PQ,
由(1)可知,△AQP∽△ABC,
∴
PA |
AC |
PQ |
BC |
3-PB |
5 |
PB |
4 |
4 |
3 |
∴AP=AB-PB=3-
4 |
3 |
5 |
3 |
(II)当点P在线段AB的延长线上时,如题图2所示.
∵∠QBP为钝角,
∴当△PQB为等腰三角形时,只可能是PB=BQ.
∵BP=BQ,∴∠BQP=∠P,
∵∠BQP+∠AQB=90°,∠A+∠P=90°,
∴∠AQB=∠A,
∴BQ=AB,
∴AB=BP,点B为线段AP中点,
∴AP=2AB=2×3=6.
综上所述,当△PQB为等腰三角形时,AP的长为
5 |
3 |
看了 已知在△ABC中,∠ABC=...的网友还看了以下:
的延长线段AB到C,下列说法正确的是()A.点C在线段AB上B.点C在直线AB上C.点C不在直线A 2020-04-27 …
已知两根木条,一根长ab=60cm一根长cd=100cm)将它们的一端重合,(a与c重合)放在同一 2020-05-23 …
碱基互补配对不发生在()A.细胞膜上B.线粒体内C.叶绿体内D.核搪体内 2020-07-06 …
如图,已知数轴上点A、B、C所对应的数a、b、c都不为0,且C是AB的中点.如果|a+b|-|a- 2020-07-20 …
如图,若数轴上的点A,B,C,D表示数-2,1,2,3,则表示4-7的点P应在线段()A.线段AB 2020-07-21 …
画一条线段的垂线,垂足一定在()A.线段上B.线段的端点C.线段的延长线上D.线段所在的直线上 2020-07-21 …
在△ABC中,向量OA=a,向量OB=b,设向量OP=p.若p=t(a/|a|+b/|b|),t∈ 2020-08-01 …
如图,已知数轴上点A、B、C所对应的数a、b、c都不为0,且C是AB的中点.如果|a+b|-|a-2 2020-11-01 …
1.已知点P为三角形ABO所在平面内的一点,满足向量OP=向量OA/|向量OA|+向量OB/|向量O 2020-12-07 …
汽车内调发机电接上B+线就有磁场是甚么回事 2020-12-13 …