早教吧作业答案频道 -->数学-->
附加题:如图,在梯形ABCD中,AD∥BC,AB=DC=AD,∠C=60°,AE⊥BD于点E,F是CD的中点,DG是梯形ABCD的高.(1)求证:四边形AEFD是平行四边形;(2)设AE=x,四边形DEGF的面积为y,求y关于x的函数
题目详情
附加题:如图,在梯形ABCD中,AD∥BC,AB=DC=AD,∠C=60°,AE⊥BD于点E,F是CD的中点,DG是梯形ABCD的高.
(1)求证:四边形AEFD是平行四边形;
(2)设AE=x,四边形DEGF的面积为y,求y关于x的函数关系式.

(1)求证:四边形AEFD是平行四边形;
(2)设AE=x,四边形DEGF的面积为y,求y关于x的函数关系式.
▼优质解答
答案和解析
(1)证明:∵AB=DC,
∴梯形ABCD为等腰梯形.
∵∠C=60°,
∴∠BAD=∠ADC=120°.
又∵AB=AD,
∴∠ABD=∠ADB=30°.
∴∠DBC=∠ADB=30°.
∴∠BDC=90°.
由AE⊥BD,
∴AE∥DC.
又∵AE为等腰△ABD的高,
∴E是BD的中点(等腰三角形三线合一).
∵F是DC的中点,
∴EF∥BC.
∴EF∥AD.
∴四边形AEFD是平行四边形.
(2)在Rt△AED中,∠ADB=30°,
∵AE=x,
∴AD=2x.
在Rt△DGC中∠C=60°,且DC=AD=2x,
∴DG=
x.
由(1)知:在平行四边形AEFD中:EF=AD=2x,
又∵DG⊥BC,
∴DG⊥EF.
∴四边形DEGF的面积=
EF•DG.
∴y=
×2x•
x=
x2(x>0).
∴梯形ABCD为等腰梯形.
∵∠C=60°,
∴∠BAD=∠ADC=120°.
又∵AB=AD,

∴∠ABD=∠ADB=30°.
∴∠DBC=∠ADB=30°.
∴∠BDC=90°.
由AE⊥BD,
∴AE∥DC.
又∵AE为等腰△ABD的高,
∴E是BD的中点(等腰三角形三线合一).
∵F是DC的中点,
∴EF∥BC.
∴EF∥AD.
∴四边形AEFD是平行四边形.
(2)在Rt△AED中,∠ADB=30°,
∵AE=x,
∴AD=2x.
在Rt△DGC中∠C=60°,且DC=AD=2x,
∴DG=
3 |
由(1)知:在平行四边形AEFD中:EF=AD=2x,
又∵DG⊥BC,
∴DG⊥EF.
∴四边形DEGF的面积=
1 |
2 |
∴y=
1 |
2 |
3 |
3 |
看了 附加题:如图,在梯形ABCD...的网友还看了以下:
设函数f(x)=2sin2(π4+x)−acos2x−1(x∈R,a为常数),已知x=5π12时f 2020-05-13 …
已知f(x)=e^x-e^﹣x,g(x)=e^x+e^﹣x(e=2.718…).设f(x)·f(y 2020-05-16 …
关于多元函数求导的一道题费解中设Z=F[x^2+y^2,g(x,y)],其中f有二阶连续偏导数,g 2020-05-17 …
设函数f(u,v)由关系式f[xg(y),y]=x+g(y)确定,其中函数g(y)可微,且g(y) 2020-06-12 …
设f(x)是连续奇函数,g(x)是连续偶函数,区域D={(x,y)|0≤x≤1,-x≤y≤x},则 2020-07-08 …
为什么平抛运动中t2=△Y/g而不是t2=2△Y/g 2020-07-10 …
文科高等数学一道导数题设y=g(x+y)确定隐函数y=y(x),其中g具有一阶导数,且其一阶导数不 2020-07-21 …
x=g(y).设函数y=f(x)(x∈A)的值域是C,根据这个函数中x,y的关系,用y把x表示出, 2020-07-29 …
求助:X~N(0,1),如何求E(X^2),E(X^4),E(X^n)X~N(0,1),如何求E( 2020-08-02 …
1.设[f(x)-e^x]sinydx-f(x)cosydy是一个二元函数的全微分,且f(x)具有一 2020-11-07 …