早教吧作业答案频道 -->其他-->
反比例函数y=kx(k>1)和y=1x在第一象限内的图象如图所示,点P在y=kx的图象上,PC⊥x轴于C,交y=1x的图象于A,PD⊥y轴于D,交y=1x的图象于B,当点P在反比例函数y=kx上运动时,以下结论①S△ODB=
题目详情

k |
x |
1 |
x |
k |
x |
1 |
x |
1 |
x |
k |
x |
1 |
2 |
PD |
PB |
PC |
PA |
A.①②③
B.①③④
C.①②④
D.①②

k |
x |
1 |
x |
k |
x |
1 |
x |
1 |
x |
k |
x |
1 |
2 |
PD |
PB |
PC |
PA |
A.①②③
B.①③④
C.①②④
D.①②
k |
x |
1 |
x |
k |
x |
1 |
x |
1 |
x |
k |
x |
1 |
2 |
PD |
PB |
PC |
PA |
A.①②③
B.①③④
C.①②④
D.①②
1 |
x |
k |
x |
1 |
x |
1 |
x |
k |
x |
1 |
2 |
PD |
PB |
PC |
PA |
A.①②③
B.①③④
C.①②④
D.①②
k |
x |
1 |
x |
1 |
x |
k |
x |
1 |
2 |
PD |
PB |
PC |
PA |
A.①②③
B.①③④
C.①②④
D.①②
1 |
x |
1 |
x |
k |
x |
1 |
2 |
PD |
PB |
PC |
PA |
A.①②③
B.①③④
C.①②④
D.①②
1 |
x |
k |
x |
1 |
2 |
PD |
PB |
PC |
PA |
A.①②③
B.①③④
C.①②④
D.①②
k |
x |
1 |
2 |
PD |
PB |
PC |
PA |
A.①②③
B.①③④
C.①②④
D.①②
1 |
2 |
PD |
PB |
PC |
PA |
A.①②③
B.①③④
C.①②④
D.①②
PD |
PB |
PC |
PA |
A.①②③
B.①③④
C.①②④
D.①②
PC |
PA |
▼优质解答
答案和解析
设P(m,n),则mn=k,
∵A、B两点在双曲线y=
上,
∴A(m,
),B(
,n),
∴①S△ODB=
DB×OD=
×
×n=
,结论正确;
②S四边形PAOB=S矩形OCPD-S△OBD-S△OAC=mn-
-
=k-1(定值),结论正确;
③PA=n-
=
,PB=m-
=
,PA≠PB,结论错误;
④
=
=
,
=
=
,
=
,结论正确.
故选C.
1 1 1x x x上,
∴A(m,
),B(
,n),
∴①S△ODB=
DB×OD=
×
×n=
,结论正确;
②S四边形PAOB=S矩形OCPD-S△OBD-S△OAC=mn-
-
=k-1(定值),结论正确;
③PA=n-
=
,PB=m-
=
,PA≠PB,结论错误;
④
=
=
,
=
=
,
=
,结论正确.
故选C.
1 1 1m m m),B(
,n),
∴①S△ODB=
DB×OD=
×
×n=
,结论正确;
②S四边形PAOB=S矩形OCPD-S△OBD-S△OAC=mn-
-
=k-1(定值),结论正确;
③PA=n-
=
,PB=m-
=
,PA≠PB,结论错误;
④
=
=
,
=
=
,
=
,结论正确.
故选C.
1 1 1n n n,n),
∴①S△ODB△ODB=
DB×OD=
×
×n=
,结论正确;
②S四边形PAOB=S矩形OCPD-S△OBD-S△OAC=mn-
-
=k-1(定值),结论正确;
③PA=n-
=
,PB=m-
=
,PA≠PB,结论错误;
④
=
=
,
=
=
,
=
,结论正确.
故选C.
1 1 12 2 2DB×OD=
×
×n=
,结论正确;
②S四边形PAOB=S矩形OCPD-S△OBD-S△OAC=mn-
-
=k-1(定值),结论正确;
③PA=n-
=
,PB=m-
=
,PA≠PB,结论错误;
④
=
=
,
=
=
,
=
,结论正确.
故选C.
1 1 12 2 2×
×n=
,结论正确;
②S四边形PAOB=S矩形OCPD-S△OBD-S△OAC=mn-
-
=k-1(定值),结论正确;
③PA=n-
=
,PB=m-
=
,PA≠PB,结论错误;
④
=
=
,
=
=
,
=
,结论正确.
故选C.
1 1 1n n n×n=
,结论正确;
②S四边形PAOB=S矩形OCPD-S△OBD-S△OAC=mn-
-
=k-1(定值),结论正确;
③PA=n-
=
,PB=m-
=
,PA≠PB,结论错误;
④
=
=
,
=
=
,
=
,结论正确.
故选C.
1 1 12 2 2,结论正确;
②S四边形PAOB四边形PAOB=S矩形OCPD矩形OCPD-S△OBD△OBD-S△OAC△OAC=mn-
-
=k-1(定值),结论正确;
③PA=n-
=
,PB=m-
=
,PA≠PB,结论错误;
④
=
=
,
=
=
,
=
,结论正确.
故选C.
1 1 12 2 2-
=k-1(定值),结论正确;
③PA=n-
=
,PB=m-
=
,PA≠PB,结论错误;
④
=
=
,
=
=
,
=
,结论正确.
故选C.
1 1 12 2 2=k-1(定值),结论正确;
③PA=n-
=
,PB=m-
=
,PA≠PB,结论错误;
④
=
=
,
=
=
,
=
,结论正确.
故选C.
1 1 1m m m=
,PB=m-
=
,PA≠PB,结论错误;
④
=
=
,
=
=
,
=
,结论正确.
故选C.
k−1 k−1 k−1m m m,PB=m-
=
,PA≠PB,结论错误;
④
=
=
,
=
=
,
=
,结论正确.
故选C.
1 1 1n n n=
,PA≠PB,结论错误;
④
=
=
,
=
=
,
=
,结论正确.
故选C.
k−1 k−1 k−1n n n,PA≠PB,结论错误;
④
=
=
,
=
=
,
=
,结论正确.
故选C.
PD PD PDPB PB PB=
=
,
=
=
,
=
,结论正确.
故选C.
m m mm−
m−
m−
1 1 1n n n=
,
=
=
,
=
,结论正确.
故选C.
k k kk−1 k−1 k−1,
=
=
,
=
,结论正确.
故选C.
PC PC PCPA PA PA=
=
,
=
,结论正确.
故选C.
n n nn−
n−
n−
1 1 1m m m=
,
=
,结论正确.
故选C.
k k kk−1 k−1 k−1,
=
,结论正确.
故选C.
PD PD PDPB PB PB=
,结论正确.
故选C.
PC PC PCPA PA PA,结论正确.
故选C.
∵A、B两点在双曲线y=
1 |
x |
∴A(m,
1 |
m |
1 |
n |
∴①S△ODB=
1 |
2 |
1 |
2 |
1 |
n |
1 |
2 |
②S四边形PAOB=S矩形OCPD-S△OBD-S△OAC=mn-
1 |
2 |
1 |
2 |
③PA=n-
1 |
m |
k−1 |
m |
1 |
n |
k−1 |
n |
④
PD |
PB |
m | ||
m−
|
k |
k−1 |
PC |
PA |
n | ||
n−
|
k |
k−1 |
PD |
PB |
PC |
PA |
故选C.
1 |
x |
∴A(m,
1 |
m |
1 |
n |
∴①S△ODB=
1 |
2 |
1 |
2 |
1 |
n |
1 |
2 |
②S四边形PAOB=S矩形OCPD-S△OBD-S△OAC=mn-
1 |
2 |
1 |
2 |
③PA=n-
1 |
m |
k−1 |
m |
1 |
n |
k−1 |
n |
④
PD |
PB |
m | ||
m−
|
k |
k−1 |
PC |
PA |
n | ||
n−
|
k |
k−1 |
PD |
PB |
PC |
PA |
故选C.
1 |
m |
1 |
n |
∴①S△ODB=
1 |
2 |
1 |
2 |
1 |
n |
1 |
2 |
②S四边形PAOB=S矩形OCPD-S△OBD-S△OAC=mn-
1 |
2 |
1 |
2 |
③PA=n-
1 |
m |
k−1 |
m |
1 |
n |
k−1 |
n |
④
PD |
PB |
m | ||
m−
|
k |
k−1 |
PC |
PA |
n | ||
n−
|
k |
k−1 |
PD |
PB |
PC |
PA |
故选C.
1 |
n |
∴①S△ODB△ODB=
1 |
2 |
1 |
2 |
1 |
n |
1 |
2 |
②S四边形PAOB=S矩形OCPD-S△OBD-S△OAC=mn-
1 |
2 |
1 |
2 |
③PA=n-
1 |
m |
k−1 |
m |
1 |
n |
k−1 |
n |
④
PD |
PB |
m | ||
m−
|
k |
k−1 |
PC |
PA |
n | ||
n−
|
k |
k−1 |
PD |
PB |
PC |
PA |
故选C.
1 |
2 |
1 |
2 |
1 |
n |
1 |
2 |
②S四边形PAOB=S矩形OCPD-S△OBD-S△OAC=mn-
1 |
2 |
1 |
2 |
③PA=n-
1 |
m |
k−1 |
m |
1 |
n |
k−1 |
n |
④
PD |
PB |
m | ||
m−
|
k |
k−1 |
PC |
PA |
n | ||
n−
|
k |
k−1 |
PD |
PB |
PC |
PA |
故选C.
1 |
2 |
1 |
n |
1 |
2 |
②S四边形PAOB=S矩形OCPD-S△OBD-S△OAC=mn-
1 |
2 |
1 |
2 |
③PA=n-
1 |
m |
k−1 |
m |
1 |
n |
k−1 |
n |
④
PD |
PB |
m | ||
m−
|
k |
k−1 |
PC |
PA |
n | ||
n−
|
k |
k−1 |
PD |
PB |
PC |
PA |
故选C.
1 |
n |
1 |
2 |
②S四边形PAOB=S矩形OCPD-S△OBD-S△OAC=mn-
1 |
2 |
1 |
2 |
③PA=n-
1 |
m |
k−1 |
m |
1 |
n |
k−1 |
n |
④
PD |
PB |
m | ||
m−
|
k |
k−1 |
PC |
PA |
n | ||
n−
|
k |
k−1 |
PD |
PB |
PC |
PA |
故选C.
1 |
2 |
②S四边形PAOB四边形PAOB=S矩形OCPD矩形OCPD-S△OBD△OBD-S△OAC△OAC=mn-
1 |
2 |
1 |
2 |
③PA=n-
1 |
m |
k−1 |
m |
1 |
n |
k−1 |
n |
④
PD |
PB |
m | ||
m−
|
k |
k−1 |
PC |
PA |
n | ||
n−
|
k |
k−1 |
PD |
PB |
PC |
PA |
故选C.
1 |
2 |
1 |
2 |
③PA=n-
1 |
m |
k−1 |
m |
1 |
n |
k−1 |
n |
④
PD |
PB |
m | ||
m−
|
k |
k−1 |
PC |
PA |
n | ||
n−
|
k |
k−1 |
PD |
PB |
PC |
PA |
故选C.
1 |
2 |
③PA=n-
1 |
m |
k−1 |
m |
1 |
n |
k−1 |
n |
④
PD |
PB |
m | ||
m−
|
k |
k−1 |
PC |
PA |
n | ||
n−
|
k |
k−1 |
PD |
PB |
PC |
PA |
故选C.
1 |
m |
k−1 |
m |
1 |
n |
k−1 |
n |
④
PD |
PB |
m | ||
m−
|
k |
k−1 |
PC |
PA |
n | ||
n−
|
k |
k−1 |
PD |
PB |
PC |
PA |
故选C.
k−1 |
m |
1 |
n |
k−1 |
n |
④
PD |
PB |
m | ||
m−
|
k |
k−1 |
PC |
PA |
n | ||
n−
|
k |
k−1 |
PD |
PB |
PC |
PA |
故选C.
1 |
n |
k−1 |
n |
④
PD |
PB |
m | ||
m−
|
k |
k−1 |
PC |
PA |
n | ||
n−
|
k |
k−1 |
PD |
PB |
PC |
PA |
故选C.
k−1 |
n |
④
PD |
PB |
m | ||
m−
|
k |
k−1 |
PC |
PA |
n | ||
n−
|
k |
k−1 |
PD |
PB |
PC |
PA |
故选C.
PD |
PB |
m | ||
m−
|
k |
k−1 |
PC |
PA |
n | ||
n−
|
k |
k−1 |
PD |
PB |
PC |
PA |
故选C.
m | ||
m−
|
1 |
n |
1 |
n |
1 |
n |
k |
k−1 |
PC |
PA |
n | ||
n−
|
k |
k−1 |
PD |
PB |
PC |
PA |
故选C.
k |
k−1 |
PC |
PA |
n | ||
n−
|
k |
k−1 |
PD |
PB |
PC |
PA |
故选C.
PC |
PA |
n | ||
n−
|
k |
k−1 |
PD |
PB |
PC |
PA |
故选C.
n | ||
n−
|
1 |
m |
1 |
m |
1 |
m |
k |
k−1 |
PD |
PB |
PC |
PA |
故选C.
k |
k−1 |
PD |
PB |
PC |
PA |
故选C.
PD |
PB |
PC |
PA |
故选C.
PC |
PA |
故选C.
看了 反比例函数y=kx(k>1)...的网友还看了以下:
请教一个ABAP编写九九乘法表的问题datas(2)typecvalue0.datad(2)typ 2020-05-17 …
对任意x,y属于S,若x+y属于S,x-y属于S,则称S对加减封闭,S为R的真子集.证明:若S1, 2020-08-01 …
对任意X,Y属于S,若X+Y属于S,X-Y属于S,则称S对加减封闭,S为R的真子集.①试举一例S② 2020-08-01 …
类比“两角和与差的正弦、余弦公式”的形式,对于给定的两个函数S(x)=[e^x-e^(-x)]/2 2020-08-03 …
类比两角和与差的正弦,余弦公式,对于给定的两个函数S(X)=(E^X-E^-X)/2,C(X)=( 2020-08-03 …
近世代数的问题:设(S,*)是半群,a属于S,在S上定义运算。如下:任意x,y属于S,x。y=近世代 2020-11-17 …
设M.N均为整数,记S为形如m+√2n(根号下2)的一切数所构成的集合,对于S中的任意两数X.Y,( 2020-11-19 …
设S为复数集C的非空子集,若对任意x,y∈S,都有x+y,x-y,xy∈S,则称S为封闭集.下列命题 2020-12-07 …
(2010•四川)设S为复数集C的非空子集.若对任意x,y∈S,都有x+y,x-y,xy∈S,则称S 2020-12-07 …
设S为实数集R的非空子集.若对任意x,y∈S,都有x+y,x-y,xy∈S,则称S为封闭集,下列说法 2020-12-27 …