早教吧作业答案频道 -->数学-->
怎么求x√(4x-x方)的积分?
题目详情
怎么求x√(4x-x方)的积分?
▼优质解答
答案和解析
令x=2+2sinu,则:sinu=(x-2)/2,u=arcsin[(x-2)/2],dx=2cosudu.
∴∫x√(4x-x^2)dx
=∫(2+2sinu)√[4-(x^2-4x+4)](2cosu)du
=4∫(1+sinu)cosu√[4-(x-2)^2]du
=4∫(1+sinu)cosu√[4-4(sinu)^2]du
=8∫(1+sinu)(cosu)^2du
=8∫(cosu)^2du+8∫sinu(cosu)^2du
=4∫(1+cos2u)du-8∫(cosu)^2d(cosu)
=4∫du+2∫cos2ud(2u)-(8/3)(cosu)^3
=4u+2sin2u-(8/3)[1-(sinu)^2]^(3/2)+C
=4arcsin[(x-2)/2]+4sinucosu-(8/3)[1-(x-2)^2/4]^(3/2)+C
=4arcsin[(x-2)/2]+4[(x-2)/2]√[1-(sinu)^2]
-(2/3)(4-x^2+4x-4)^(3/2)+C
=4arcsin[(x-2)/2]+2(x-2)√[1-(x-2)^2/4]-(2/3)(4x-x^2)^(3/2)+C
=4arcsin[(x-2)/2]+(x-2)√(4-x^2+4x-4)-(2/3)(4x-x^2)√(4x-x^2)+C
=4arcsin[(x-2)/2]+(1/3)(3x-6-8x+2x^2)√(4x-x^2)+C
=4arcsin[(x-2)/2]+(1/3)(2x^2-5x-6)√(4x-x^2)+C
∴∫x√(4x-x^2)dx
=∫(2+2sinu)√[4-(x^2-4x+4)](2cosu)du
=4∫(1+sinu)cosu√[4-(x-2)^2]du
=4∫(1+sinu)cosu√[4-4(sinu)^2]du
=8∫(1+sinu)(cosu)^2du
=8∫(cosu)^2du+8∫sinu(cosu)^2du
=4∫(1+cos2u)du-8∫(cosu)^2d(cosu)
=4∫du+2∫cos2ud(2u)-(8/3)(cosu)^3
=4u+2sin2u-(8/3)[1-(sinu)^2]^(3/2)+C
=4arcsin[(x-2)/2]+4sinucosu-(8/3)[1-(x-2)^2/4]^(3/2)+C
=4arcsin[(x-2)/2]+4[(x-2)/2]√[1-(sinu)^2]
-(2/3)(4-x^2+4x-4)^(3/2)+C
=4arcsin[(x-2)/2]+2(x-2)√[1-(x-2)^2/4]-(2/3)(4x-x^2)^(3/2)+C
=4arcsin[(x-2)/2]+(x-2)√(4-x^2+4x-4)-(2/3)(4x-x^2)√(4x-x^2)+C
=4arcsin[(x-2)/2]+(1/3)(3x-6-8x+2x^2)√(4x-x^2)+C
=4arcsin[(x-2)/2]+(1/3)(2x^2-5x-6)√(4x-x^2)+C
看了 怎么求x√(4x-x方)的积...的网友还看了以下:
(1),设g(x)=1+x,且当x≠0时,f(g(x))=(1-x)/x,求f(1/2)(2),f 2020-04-26 …
1.x-1分之x平方+3x+2+6分之2+x-x平方-10-x分之4-x平方2.x+1-1分之1- 2020-05-13 …
1.已知函数f(x)满足f(x)+2f(1/x)=2x-1,求f(x)2.设f(x)是定义在R上的 2020-05-23 …
一个关于求导数的答案不明白的地方求f(x)=2x^2+x-1(x>0)的反函数在x=2处的切线的斜 2020-06-06 …
已知函数f(x)=2|x-2|+ax(x∈R)有最小值.(1)求实常数a的取值范围;(2)设g(x 2020-07-27 …
,关于集合的..设集合M={x|m-4/5≤x≤m},N={x|n≤x≤n+1/4},且M,N都是 2020-07-29 …
,关于集合的..设集合M={x|m-4/5≤x≤m},N={x|n≤x≤n+1/4},且M,N都是 2020-07-29 …
f(x)未定义在R上的偶函数,当x≥0时,f(x)=e^x,(其中e=2.71828…为自然对数的 2020-08-02 …
1+x+x(x+1)+x(x+1)^2=(1+x)[1+x+x(x+1)]=(1+x)^2(1+x 2020-08-03 …
f(x)+2f(-x)=3x+x²求f(x)老师讲的有点不懂,列了一个方程组f(x)+2f(-x)= 2020-11-20 …