早教吧作业答案频道 -->数学-->
已知:关于x的方程4(a-x)(c-x)-(b-x)^2=0有相等的实数根.求证:以a、b、c为三边的三角形ABC是等边三角形.
题目详情
已知:关于x的方程4(a-x)(c-x)-(b-x)^2=0有相等的实数根.求证:以a、b、c为三边的三角形ABC是等边三角形.
▼优质解答
答案和解析
1.因为(a-x)^2-4(b-x)(c-x)=0,
所以3x^2+(2a-4b-4c)x+(4bc-a^2)=0,
所以(判别式)1=(2a-4b-4c)^2-12(4bc-a^2)
=16[a^2-(b+c)a+(b^2+c^2-bc)],
令f(a)=a^2-(b+c)a+(b^2+c^2-bc),
所以(判别式)2=(b+c)^2-4(b^2+c^2-bc)
=-3(b-c)^2<=0,
所以对于任意实数a,f(a)>=0恒成立,
所以(判别式)1>=0恒成立,
所以此方程必有实数根;
2.若方程有两个相等的实数根,
所以f(a)=0,即-3(b-c)^2=0,
所以b=c,
所以(判别式)1=a^2-2b*a+b^2=(a-b)^2=0,
所以a=b.
所以a=b=c,
所以三角形ABC为等边三角形.
所以3x^2+(2a-4b-4c)x+(4bc-a^2)=0,
所以(判别式)1=(2a-4b-4c)^2-12(4bc-a^2)
=16[a^2-(b+c)a+(b^2+c^2-bc)],
令f(a)=a^2-(b+c)a+(b^2+c^2-bc),
所以(判别式)2=(b+c)^2-4(b^2+c^2-bc)
=-3(b-c)^2<=0,
所以对于任意实数a,f(a)>=0恒成立,
所以(判别式)1>=0恒成立,
所以此方程必有实数根;
2.若方程有两个相等的实数根,
所以f(a)=0,即-3(b-c)^2=0,
所以b=c,
所以(判别式)1=a^2-2b*a+b^2=(a-b)^2=0,
所以a=b.
所以a=b=c,
所以三角形ABC为等边三角形.
看了 已知:关于x的方程4(a-x...的网友还看了以下:
求解几道不等式证明1.求证:x²>4x—5.2.求证:a的四次方+1≥a的三次方+a3.已知a>0 2020-04-27 …
求证函数的差分等式的问题如何证明f(x)=x^m(即x的m次方)的m-1级差分等于m!(x+1/2 2020-05-13 …
(1)利用基本不等式证明不等式:已知a>3,求证a+4a?3≥7;(2)已知x>0,y>0,且x+ 2020-05-13 …
一道大一数学题,急等!设f(x)有二阶连续导数,且f(0)=0,试证函数g(x)可导,且g'(x) 2020-06-06 …
w+x+y+z=4,求证不等式w+x+y+z=4,且w、x、y、z均大于等于0,证明不等式w平方+ 2020-06-14 …
已知a、b、c分别是△ABC的三边,且m为a边上的中线,关于x的方程b^2x^2+4cmx+(2m 2020-07-08 …
不等式证明和三角形的关系.1.已知△ABC的外接圆半径R=1,S△ABC=1/4a,b,c是△AB 2020-07-24 …
怎样用概括的方法证明两个三角形全等用边来证明还有用对称来证明两个三角形全等还有等腰三角形,全等三角 2020-08-03 …
一.设X,Y,Z为正数,且x^2+y^2+Z^2=1,求证:xy/z+yz/x+zx/y>=根号3二 2020-10-31 …
不等式证明3实数x、y、z满足x^5+y^5=2.求证:x+y≤2.思考了两天已想出两种证法:(1) 2020-11-01 …