早教吧作业答案频道 -->数学-->
已知a、b、c分别是△ABC的三边,且m为a边上的中线,关于x的方程b^2x^2+4cmx+(2m-a)^2=2a(a+c-2m)x①求证:方程总有两个实数根;②若这两个实数根相等,求证△ABC是直角三角形的,关于根与系数的关系
题目详情
已知a、b、c分别是△ABC的三边,且m为a边上的中线,关于x 的方程b^2x^2+4cmx+(2m-a)^2=2a(a+c-2m)x
①求证:方程总有两个实数根;②若这两个实数根相等,求证△ABC是直角三角形
的,关于根与系数的关系
①求证:方程总有两个实数根;②若这两个实数根相等,求证△ABC是直角三角形
的,关于根与系数的关系
▼优质解答
答案和解析
方程b^2x^2+4cmx+(2m-a)^2=2a(a+c-2m)x可化为:
b^2x^2+(4cm-2a^2-2ac+4am)x+(2m-a)^2=0
b^2x^2+(4m-2a)(a+c)x+(2m-a)^2=0.由题知:2m>a,所以2m-a>0,(2m-a)^2>0,令K=2m-a,则B^2-4AC=4K^2(a+c)^2-4K^2b^2=4K^2〔(a+c)^2-b^2〕,因为K^2>0,所以4K^2>0,(a+c)^2-b^2=(a+c+b)(a+c-b),因为a+c+b>0,a+c-b>0,所以(a+c+b)(a+c-b)>0,所以4K^2〔(a+c)^2-b^2〕>0,所以B^2-4AC>0,所以方程总有两个实数根
若这两个实数根相等,则B^2-4AC=0,即4K^2〔(a+c)^2-b^2〕=0,(2m-a)^2(a+c+b)(a+c-b)=0,因为(a+c+b)(a+c-b)>0,所以(2m-a)^2=0,2m-a=0,2m=a,令线段m为AD,则BD=DC=AD,所以∠ABD=∠BAD,∠C=∠DAC,又因为∠ABD+∠BAD+∠C+∠DAC=180°所以∠BAD+∠DAC=∠ABD+∠C=180°/2=90°,∠BAD+∠DAC=∠BAC=90°,所以△ABC是直角三角形
b^2x^2+(4cm-2a^2-2ac+4am)x+(2m-a)^2=0
b^2x^2+(4m-2a)(a+c)x+(2m-a)^2=0.由题知:2m>a,所以2m-a>0,(2m-a)^2>0,令K=2m-a,则B^2-4AC=4K^2(a+c)^2-4K^2b^2=4K^2〔(a+c)^2-b^2〕,因为K^2>0,所以4K^2>0,(a+c)^2-b^2=(a+c+b)(a+c-b),因为a+c+b>0,a+c-b>0,所以(a+c+b)(a+c-b)>0,所以4K^2〔(a+c)^2-b^2〕>0,所以B^2-4AC>0,所以方程总有两个实数根
若这两个实数根相等,则B^2-4AC=0,即4K^2〔(a+c)^2-b^2〕=0,(2m-a)^2(a+c+b)(a+c-b)=0,因为(a+c+b)(a+c-b)>0,所以(2m-a)^2=0,2m-a=0,2m=a,令线段m为AD,则BD=DC=AD,所以∠ABD=∠BAD,∠C=∠DAC,又因为∠ABD+∠BAD+∠C+∠DAC=180°所以∠BAD+∠DAC=∠ABD+∠C=180°/2=90°,∠BAD+∠DAC=∠BAC=90°,所以△ABC是直角三角形
看了 已知a、b、c分别是△ABC...的网友还看了以下:
交集 由属于集合A且属于集合B的所有元素组成的集合叫做A与B的交集.对于“A∩B={x|x∈A,且 2020-04-05 …
函数数学题.设f(x)=x^2-alnx g(x)=x-a根号x的图像分别交直线x+1于点A,B, 2020-05-15 …
已知实数A,B满足条件|A-B|=B/A且小于1,化简代数式(1/A-1/B)√(A-B-1),将 2020-05-16 …
已知抛物线Y=AX^2+bx+c(a不等于0) 的顶点坐标 为Q(2,-1),且与Y轴交于 点C( 2020-05-16 …
已知集合A={1234},函数fx的定义域,值域都是A,且对于任意i∈A,f(i)≠i.(求答疑) 2020-06-08 …
在平面直角坐标系中,直线L1:y=2x+b交x轴正半轴于点A,点B(4,0)在点A的右边,现过点B 2020-06-14 …
建筑物的防雷分类,次/a和d/a是什么意思?建筑物的防雷分类中,3.0.4条第三类防雷建筑物:3预 2020-07-25 …
交集性质是什么?交集定义:由所有属于集合A且属于集合B地元素组成地集合,叫做A,B的交集.表示:A 2020-07-30 …
高考数学问题:过双曲线一焦点且垂直于双曲线实轴的直线交双曲线于A,B两点1,过双曲线一焦点且垂直于 2020-07-30 …
已知函数y=f(x),x属于(x大于等于a且小于等于b),设集合A={(x,y)}|y=f(x),x 2020-12-02 …