早教吧作业答案频道 -->数学-->
已知a、b、c分别是△ABC的三边,且m为a边上的中线,关于x的方程b^2x^2+4cmx+(2m-a)^2=2a(a+c-2m)x①求证:方程总有两个实数根;②若这两个实数根相等,求证△ABC是直角三角形的,关于根与系数的关系
题目详情
已知a、b、c分别是△ABC的三边,且m为a边上的中线,关于x 的方程b^2x^2+4cmx+(2m-a)^2=2a(a+c-2m)x
①求证:方程总有两个实数根;②若这两个实数根相等,求证△ABC是直角三角形
的,关于根与系数的关系
①求证:方程总有两个实数根;②若这两个实数根相等,求证△ABC是直角三角形
的,关于根与系数的关系
▼优质解答
答案和解析
方程b^2x^2+4cmx+(2m-a)^2=2a(a+c-2m)x可化为:
b^2x^2+(4cm-2a^2-2ac+4am)x+(2m-a)^2=0
b^2x^2+(4m-2a)(a+c)x+(2m-a)^2=0.由题知:2m>a,所以2m-a>0,(2m-a)^2>0,令K=2m-a,则B^2-4AC=4K^2(a+c)^2-4K^2b^2=4K^2〔(a+c)^2-b^2〕,因为K^2>0,所以4K^2>0,(a+c)^2-b^2=(a+c+b)(a+c-b),因为a+c+b>0,a+c-b>0,所以(a+c+b)(a+c-b)>0,所以4K^2〔(a+c)^2-b^2〕>0,所以B^2-4AC>0,所以方程总有两个实数根
若这两个实数根相等,则B^2-4AC=0,即4K^2〔(a+c)^2-b^2〕=0,(2m-a)^2(a+c+b)(a+c-b)=0,因为(a+c+b)(a+c-b)>0,所以(2m-a)^2=0,2m-a=0,2m=a,令线段m为AD,则BD=DC=AD,所以∠ABD=∠BAD,∠C=∠DAC,又因为∠ABD+∠BAD+∠C+∠DAC=180°所以∠BAD+∠DAC=∠ABD+∠C=180°/2=90°,∠BAD+∠DAC=∠BAC=90°,所以△ABC是直角三角形
b^2x^2+(4cm-2a^2-2ac+4am)x+(2m-a)^2=0
b^2x^2+(4m-2a)(a+c)x+(2m-a)^2=0.由题知:2m>a,所以2m-a>0,(2m-a)^2>0,令K=2m-a,则B^2-4AC=4K^2(a+c)^2-4K^2b^2=4K^2〔(a+c)^2-b^2〕,因为K^2>0,所以4K^2>0,(a+c)^2-b^2=(a+c+b)(a+c-b),因为a+c+b>0,a+c-b>0,所以(a+c+b)(a+c-b)>0,所以4K^2〔(a+c)^2-b^2〕>0,所以B^2-4AC>0,所以方程总有两个实数根
若这两个实数根相等,则B^2-4AC=0,即4K^2〔(a+c)^2-b^2〕=0,(2m-a)^2(a+c+b)(a+c-b)=0,因为(a+c+b)(a+c-b)>0,所以(2m-a)^2=0,2m-a=0,2m=a,令线段m为AD,则BD=DC=AD,所以∠ABD=∠BAD,∠C=∠DAC,又因为∠ABD+∠BAD+∠C+∠DAC=180°所以∠BAD+∠DAC=∠ABD+∠C=180°/2=90°,∠BAD+∠DAC=∠BAC=90°,所以△ABC是直角三角形
看了 已知a、b、c分别是△ABC...的网友还看了以下:
已知椭圆C中心在原点,焦点在x轴上,其长轴长为4,焦距为2.(1)求椭圆C的方程;(2)直线l过点 2020-05-15 …
(2012•吴中区一模)如图,已知抛物线y=-x2+bx+c与x轴负半轴交于点A,与y轴正半轴交于 2020-05-17 …
已知圆C的半径为2,圆心在X轴的正半轴上,直线3X-4Y+4=0与圆C相切.过点Q(0,-3)的直 2020-06-09 …
若三角形的三边ABC,且满足A的4次方+B的4次方+C的4次方=A的2次方乘B的2次方+B的2次方 2020-07-22 …
已知圆C的圆心坐标原点,且过点M(1,根号3)问:(1)求圆C的方程(2)已知点P是圆C上的动点, 2020-07-26 …
已知椭圆C的长轴长是短轴长只差是2根号2-2,且右焦点F到此椭圆的一个短轴端点的的距离为√2,点C 2020-07-31 …
已知抛物线C的顶点在原点,焦点在y轴上,抛物线上点M(x,4)(x>0)到准线的距离是5.(Ⅰ)求 2020-07-31 …
(2/3)角形ABC的内角A,B,C,的对边分别为a,b,c,且c=√3,f(C)=0,若2sinA 2020-12-07 …
下列关于根系的说法正确的是①所有的胚根将来都发育成明显的主根②在主根周围陆续生长出的根是须根③直根系 2020-12-25 …
1、已知实数a、b、c满足2│a-1│+√2b+c(根号2b+c)+c的平方-c+1/4=0,求a、 2020-12-31 …