早教吧作业答案频道 -->数学-->
数列极限问题现在知道Sn=[(n+3)`n]/2①求解1/S1+1/S2+```1/Sn的极限答案是11/9②为什么1/Sn
题目详情
数列极限问题
现在知道Sn=[(n+3)`n]/2
①求解1/S1+1/S2+```1/Sn的极限
答案是 11/9
②为什么1/Sn
现在知道Sn=[(n+3)`n]/2
①求解1/S1+1/S2+```1/Sn的极限
答案是 11/9
②为什么1/Sn
▼优质解答
答案和解析
Sn=[(n+3)n]/2
1/Sn=2/[n(n+3)]=(2/3)[1/n -1/(n+3)]
1/S1+1/S2+...+1/Sn
=(2/3)[1/1-1/4+1/2-1/5+...+1/n-1/(n+3)]
=(2/3)[(1/1+1/2+...+1/n)-(1/4+1/5+...+1/(n+3))]
=(2/3)[1+1/2+1/3 -1/(n+1)-1/(n+2)-1/(n+3)]
=11/9 -(2/3)[1/(n+1)+1/(n+2)+1/(n+3)]
n->+∞,则n+1->+∞,n+2->+∞,n+3->+∞
1/(n+1)->0 1/(n+2)->0 1/(n+3)->0
(2/3)[1/(n+1)+1/(n+2)+1/(n+3)]->0
11/9 -(2/3)[1/(n+1)+1/(n+2)+1/(n+3)]->11/9
lim (1/S1+1/S2+...+1/Sn)=11/9
n->+∞
1/Sn=2/[n(n+3)]=(2/3)[1/n -1/(n+3)]
1/S1+1/S2+...+1/Sn
=(2/3)[1/1-1/4+1/2-1/5+...+1/n-1/(n+3)]
=(2/3)[(1/1+1/2+...+1/n)-(1/4+1/5+...+1/(n+3))]
=(2/3)[1+1/2+1/3 -1/(n+1)-1/(n+2)-1/(n+3)]
=11/9 -(2/3)[1/(n+1)+1/(n+2)+1/(n+3)]
n->+∞,则n+1->+∞,n+2->+∞,n+3->+∞
1/(n+1)->0 1/(n+2)->0 1/(n+3)->0
(2/3)[1/(n+1)+1/(n+2)+1/(n+3)]->0
11/9 -(2/3)[1/(n+1)+1/(n+2)+1/(n+3)]->11/9
lim (1/S1+1/S2+...+1/Sn)=11/9
n->+∞
看了 数列极限问题现在知道Sn=[...的网友还看了以下:
由若干盆花组成的三角形图案,每条边(包括两个顶点)有n(n>1)盆花,每个图案花盆总数是S:n=2 2020-05-13 …
可以参考的公式是:s[1]=a[1];s[n]=s[n-1]>=0?s[n-1]+a[n]:a[n 2020-05-14 …
一个数阵:当n=1时,s=0.当n=2时,s=1.当n=3时,s=3.当n=4时,s=6.当n=5 2020-05-16 …
请教一道有关自然数的题目对任意正整数n,用S(n)表示满足不定方程1/x+1/y=1/n的正整数对 2020-06-08 …
已知a+b=1,ab=-1设S(1)=a+bS(2)=a²+b²S(3)=a三次方+b三次方S(n 2020-06-12 …
5c方+12c-60=0怎么解已知△ABC的内角A,B,C所对的边分别为a,b,c,且a=2,co 2020-07-09 …
几个关于圆周率π的问题1.设S=1/1²+1/2²+1/3²+1/4²……+n²,求证n-->∞时 2020-07-19 …
在等差数列{an}中,⑴若项数为偶数2n,则S2n=n(a1+a2n)=n(an+an+1)(an 2020-07-21 …
三道C语言题,请高手指点第一道:#includedoublef(intn){inti;double 2020-07-23 …
关于数学集合的题设非空集合S={x|m≤x≤n},满足:当x∈S时,x²∈S.给出如下三个命题①若 2020-08-01 …