早教吧作业答案频道 -->数学-->
在正数数列a[n]中,已知a[n]与2的等差中项等于S[n]与2的等比中项,求a[n]通项公式
题目详情
在正数数列a[n]中,已知a[n]与2的等差中项等于S[n]与2的等比中项,求a[n]通项公式
▼优质解答
答案和解析
根据题目可以得出(a[n]-2)=S[n]/2 ,既有
(a[n-1]-2)=S[n-1]/2 S[n]=S[n-1]+a[n]
代入化简可以得到:2a[n-1]=a[n].我们可以进一步得到:a[1]=a[1] a[2]=2a[1]
a[3]=2a[2]=4a[1] a[4]=2a[3]=8a[1]...
当n=1时 还有:a[1]-2=S[1]/2 S[1]=a[1]算出a[1]=4,由此可以得出a[2]=8 a[3]=16
a[4]=32.猜想a[n]=2的(n+1)次方,这个明显是个等比数列.公比q=2
证明该猜想成立:
显然在n=1的时候猜想成立,假设n=m的时候也成立,由求和公式可以得出,S[m]=2[2的(m+1)次方-2] 当n=m+1时候有:S[m+1]=S[m]+a[m+1]代入化简可以得到:S[m+1]=2[2的(m+1+1)次方-2]
所以 猜想成立.
即a[n]=2的(n+1)次方
(a[n-1]-2)=S[n-1]/2 S[n]=S[n-1]+a[n]
代入化简可以得到:2a[n-1]=a[n].我们可以进一步得到:a[1]=a[1] a[2]=2a[1]
a[3]=2a[2]=4a[1] a[4]=2a[3]=8a[1]...
当n=1时 还有:a[1]-2=S[1]/2 S[1]=a[1]算出a[1]=4,由此可以得出a[2]=8 a[3]=16
a[4]=32.猜想a[n]=2的(n+1)次方,这个明显是个等比数列.公比q=2
证明该猜想成立:
显然在n=1的时候猜想成立,假设n=m的时候也成立,由求和公式可以得出,S[m]=2[2的(m+1)次方-2] 当n=m+1时候有:S[m+1]=S[m]+a[m+1]代入化简可以得到:S[m+1]=2[2的(m+1+1)次方-2]
所以 猜想成立.
即a[n]=2的(n+1)次方
看了 在正数数列a[n]中,已知a...的网友还看了以下:
1.已知数列{An}满足{An/n}是公差为1,的等差数列,且An+1=(n+2/n)·An+1( 2020-04-09 …
1.数列1/2,3/4,5/8,7/16,9/32,……的前n项和Sn=2.在等比数列{an}中, 2020-05-13 …
已知等比数列{an}的公比q>1,且a1与a4的一等比中项为42,a2与a3的等差中项为6.(I) 2020-05-13 …
等比数列{an}(an>0,n∈N*)中,公比q∈(0,1),a1a5+2a3a5+a2a8=25 2020-05-13 …
数列an是公比为1/2的等比数列,且1-a2是a1与1a3的等比中项,前n项和为Sn.数列bn是等 2020-05-13 …
在公差不为零的等差数列{x(n)}和等比数列{y(n)}中,已知x1=1,且x1=y1,x2=y2 2020-06-04 …
已知等比数列{an}的公比q>1,42是a1和a4的一个等比中项,a2和a3的等差中项为6,若数列 2020-06-11 …
一已知数列an满足递推公式an=2an-1+1(n>=2,n-1为小写),其中a4=151.求a1 2020-06-14 …
1.在等差数列{an}中,若S12=72,则a6+a72.设Sn表示等差数列{an}中的前n项和,已 2020-10-31 …
在等比数列{an}中,an>0(n属于N*)公比q属于(0,1),且a3+a5=5,又a3与a5的等 2020-12-24 …