早教吧作业答案频道 -->数学-->
求一道数列题已知数列an的首项a13,通项an与前n项和Sn满足2an=Sn*S(n-1),(1)求证1/Sn是等差数列,并求公差,(2)求数列an的通项公式,(3)数列an中是否存在自然数k,使得不等式ak大于a(k+1)对于任意大于k或
题目详情
求一道数列题
已知数列an的首项a13,通项an与前n项和Sn满足2an=Sn*S(n-1),(1)求证1/Sn是等差数列,并求公差,(2)求数列an的通项公式,(3)数列an中是否存在自然数k,使得不等式ak大于a(k+1)对于任意大于k或者等于k的自然数都成立?若存在,求出最小的k,若不存在,说明理由
已知数列an的首项a13,通项an与前n项和Sn满足2an=Sn*S(n-1),(1)求证1/Sn是等差数列,并求公差,(2)求数列an的通项公式,(3)数列an中是否存在自然数k,使得不等式ak大于a(k+1)对于任意大于k或者等于k的自然数都成立?若存在,求出最小的k,若不存在,说明理由
▼优质解答
答案和解析
1.
n≥2时,
2an=2[Sn-S(n-1)]=2Sn-2S(n-1)
2Sn-2S(n-1)=SnS(n-1)
等式两边同除以2SnS(n-1)
1/S(n-1)- 1/Sn=1/2
1/Sn -1/S(n-1)=-1/2
1/S1=1/a1=1/3,数列{1/Sn}是以1/3为首项,-1/2为公差的等差数列,公差=-1/2
2.
1/Sn=(1/3)+(-1/2)(n-1)=(5-3n)/6
Sn=6/(5-3n)
n≥2时,an=Sn-S(n-1)=6/(5-3n)- 6/[5-3(n-1)]=6/(5-3n) -6/(8-3n)
n=1时,a1=6/(5-3)-6/(8-3)=9/5≠3
数列{an}的通项公式为
an=3 n=1
6/(5-3n)-6/(8-3n) n≥2
3.
假设存在满足题意的k
k=1时,
a2=6/(5-3×2)-6/(8-3×2)=-9
k≥2时,
ak>a(k+1)
6/(5-3k) -6/(8-3k)>6/[5-3(k+1)]-6/[8-3(k+1)]
1/(3k-8)+1/(3k-2)>2/(3k-5)
1/[(3k-2)(3k-8)]>1/(3k-5)²
不等式右边1/(3k-5)²恒>0,要不等式有解,(3k-2)(3k-8)>0 k>8/3,k为正整数,k≥3
(3k-2)(3k-8)0,不等式恒成立,即k≥3时,恒满足题意.
综上,得k的最小值为3.
n≥2时,
2an=2[Sn-S(n-1)]=2Sn-2S(n-1)
2Sn-2S(n-1)=SnS(n-1)
等式两边同除以2SnS(n-1)
1/S(n-1)- 1/Sn=1/2
1/Sn -1/S(n-1)=-1/2
1/S1=1/a1=1/3,数列{1/Sn}是以1/3为首项,-1/2为公差的等差数列,公差=-1/2
2.
1/Sn=(1/3)+(-1/2)(n-1)=(5-3n)/6
Sn=6/(5-3n)
n≥2时,an=Sn-S(n-1)=6/(5-3n)- 6/[5-3(n-1)]=6/(5-3n) -6/(8-3n)
n=1时,a1=6/(5-3)-6/(8-3)=9/5≠3
数列{an}的通项公式为
an=3 n=1
6/(5-3n)-6/(8-3n) n≥2
3.
假设存在满足题意的k
k=1时,
a2=6/(5-3×2)-6/(8-3×2)=-9
k≥2时,
ak>a(k+1)
6/(5-3k) -6/(8-3k)>6/[5-3(k+1)]-6/[8-3(k+1)]
1/(3k-8)+1/(3k-2)>2/(3k-5)
1/[(3k-2)(3k-8)]>1/(3k-5)²
不等式右边1/(3k-5)²恒>0,要不等式有解,(3k-2)(3k-8)>0 k>8/3,k为正整数,k≥3
(3k-2)(3k-8)0,不等式恒成立,即k≥3时,恒满足题意.
综上,得k的最小值为3.
看了 求一道数列题已知数列an的首...的网友还看了以下:
1.数列1/2,3/4,5/8,7/16,9/32,……的前n项和Sn=2.在等比数列{an}中, 2020-05-13 …
知道题是这样的已知等差数列an的工差d不等于零前n项和为sn若s三等于a二的平方,且s一s二s四成 2020-05-13 …
1.已知等差数列{An}满足:A3=7,A5+A7=26,{An}的前n项和为Tn我已经算出An= 2020-05-16 …
(2014•杭州二模)设Sn为等差数列{an}的前n项和,(n+1)Sn<nSn+1(n∈N*), 2020-07-09 …
已知{an}为等差数列,若a10/a9<-1,且它的前n项和Sn有最大值,那么当Sn取得最小正值时 2020-07-09 …
已知数列{an}中,a1=4,an>0,前n项和为Sn,若an=√Sn+√S(n-1)(n∈N*, 2020-07-09 …
已知两个等差数列{an}与{bn},它的前n项和分别为Sn、S”n,已知Sn/S'n=n+3/n+ 2020-07-09 …
设等比数列{an}的公比为q,前n项和为Sn,若S(n+1),Sn,S(n+2)成等差数,则q的值 2020-07-30 …
观察下面的式子,s1等于1加1的平方分之一加2的平方分之一.s2=1+1/2的平方+1/3的平.S 2020-08-02 …
若Sn-S(n-1)=n^p,求Sn也就是求1^p+2^p+3^p+.+n^p,p可以是正数,负数, 2021-02-16 …