早教吧作业答案频道 -->数学-->
求一道数列题已知数列an的首项a13,通项an与前n项和Sn满足2an=Sn*S(n-1),(1)求证1/Sn是等差数列,并求公差,(2)求数列an的通项公式,(3)数列an中是否存在自然数k,使得不等式ak大于a(k+1)对于任意大于k或
题目详情
求一道数列题
已知数列an的首项a13,通项an与前n项和Sn满足2an=Sn*S(n-1),(1)求证1/Sn是等差数列,并求公差,(2)求数列an的通项公式,(3)数列an中是否存在自然数k,使得不等式ak大于a(k+1)对于任意大于k或者等于k的自然数都成立?若存在,求出最小的k,若不存在,说明理由
已知数列an的首项a13,通项an与前n项和Sn满足2an=Sn*S(n-1),(1)求证1/Sn是等差数列,并求公差,(2)求数列an的通项公式,(3)数列an中是否存在自然数k,使得不等式ak大于a(k+1)对于任意大于k或者等于k的自然数都成立?若存在,求出最小的k,若不存在,说明理由
▼优质解答
答案和解析
1.
n≥2时,
2an=2[Sn-S(n-1)]=2Sn-2S(n-1)
2Sn-2S(n-1)=SnS(n-1)
等式两边同除以2SnS(n-1)
1/S(n-1)- 1/Sn=1/2
1/Sn -1/S(n-1)=-1/2
1/S1=1/a1=1/3,数列{1/Sn}是以1/3为首项,-1/2为公差的等差数列,公差=-1/2
2.
1/Sn=(1/3)+(-1/2)(n-1)=(5-3n)/6
Sn=6/(5-3n)
n≥2时,an=Sn-S(n-1)=6/(5-3n)- 6/[5-3(n-1)]=6/(5-3n) -6/(8-3n)
n=1时,a1=6/(5-3)-6/(8-3)=9/5≠3
数列{an}的通项公式为
an=3 n=1
6/(5-3n)-6/(8-3n) n≥2
3.
假设存在满足题意的k
k=1时,
a2=6/(5-3×2)-6/(8-3×2)=-9
k≥2时,
ak>a(k+1)
6/(5-3k) -6/(8-3k)>6/[5-3(k+1)]-6/[8-3(k+1)]
1/(3k-8)+1/(3k-2)>2/(3k-5)
1/[(3k-2)(3k-8)]>1/(3k-5)²
不等式右边1/(3k-5)²恒>0,要不等式有解,(3k-2)(3k-8)>0 k>8/3,k为正整数,k≥3
(3k-2)(3k-8)0,不等式恒成立,即k≥3时,恒满足题意.
综上,得k的最小值为3.
n≥2时,
2an=2[Sn-S(n-1)]=2Sn-2S(n-1)
2Sn-2S(n-1)=SnS(n-1)
等式两边同除以2SnS(n-1)
1/S(n-1)- 1/Sn=1/2
1/Sn -1/S(n-1)=-1/2
1/S1=1/a1=1/3,数列{1/Sn}是以1/3为首项,-1/2为公差的等差数列,公差=-1/2
2.
1/Sn=(1/3)+(-1/2)(n-1)=(5-3n)/6
Sn=6/(5-3n)
n≥2时,an=Sn-S(n-1)=6/(5-3n)- 6/[5-3(n-1)]=6/(5-3n) -6/(8-3n)
n=1时,a1=6/(5-3)-6/(8-3)=9/5≠3
数列{an}的通项公式为
an=3 n=1
6/(5-3n)-6/(8-3n) n≥2
3.
假设存在满足题意的k
k=1时,
a2=6/(5-3×2)-6/(8-3×2)=-9
k≥2时,
ak>a(k+1)
6/(5-3k) -6/(8-3k)>6/[5-3(k+1)]-6/[8-3(k+1)]
1/(3k-8)+1/(3k-2)>2/(3k-5)
1/[(3k-2)(3k-8)]>1/(3k-5)²
不等式右边1/(3k-5)²恒>0,要不等式有解,(3k-2)(3k-8)>0 k>8/3,k为正整数,k≥3
(3k-2)(3k-8)0,不等式恒成立,即k≥3时,恒满足题意.
综上,得k的最小值为3.
看了 求一道数列题已知数列an的首...的网友还看了以下:
设Sn为数列{an}的前n项和,Sn=kn2+n,n∈N*,其中k是常数.(Ⅰ)求a1及an;(Ⅱ 2020-05-17 …
在数列{an}中,a1=0,且对任意k∈N*,a2k-1.、a2k、a2k-1在数列{an}中,a 2020-05-17 …
在数列{an}中,a1=1,且对任意K∈N*,a(2k-1),a(2k),a(2k+1)成等比数列 2020-05-23 …
C(n,k)=C(n-1,k-1)+C(n-1,k)为什么这个等式成立?请大神帮我解释下C(n,k 2020-06-12 …
运筹学知识凸集的概念:设K是n维欧式空间中的一点,若任意两点x1,x2属于K且x1不等于x2,连线 2020-06-17 …
对任意k,等式y=kx-x+2k恒成立,. 2020-06-27 …
已知{an}是等比数列1)a5^2=a3·a7是否成立?a5^2=a1·a9是否成立?2)an^2 2020-07-09 …
在数列{an}中,a1=2,an+1(下标)=λan(下标)+λ^(n+1)+(2-λ)2^n(n 2020-07-29 …
已知等差数列{an}的公差d不等于0,Sn是其前n项和,给出下列命题:①给定n(n≥2,且n∈N* 2020-07-30 …
数列{an}是等比数列,则下列结论中正确的是()A.对任意k∈N*,都有akak+1>0B.对任意k 2020-12-23 …