早教吧作业答案频道 -->数学-->
椭圆C:x^2/a^2+y^2/b^2=1(a大于b大于0),离心率为二分之根号三,过点(0,1)设P(4,0),MN为椭圆C上关于X轴对称的任意两个不同的点,连结PN交椭圆于另一点E,证明直线ME与X轴相交于定点.
题目详情
椭圆C:x^2/a^2+y^2/b^2=1(a大于b大于0),离心率为二分之根号三,过点(0,1)设P(4,0),MN为椭圆C上关于X轴对称的任意两个不同的点,连结PN交椭圆于另一点E,证明直线ME与X轴相交于定点.
▼优质解答
答案和解析
e=c/a=√3/2 2c=√3a 4c^2=3a^2 又根据b^2=a^2-c^2易得a b c等量关系.将(0.1)代入椭圆方程即b为一再联立a b c等量关系算得a=2 b=1 c= √3 椭圆方程易得.直线恒过4.0点,设直线为y=kx+m 得k为-m/4直线方程为y=-m/4+m代入椭圆方程整理得(4+m)x^2+8m^2x+16(m^2-1)=0 算得x1.x2分别将两点横坐标不变纵坐标变为原来的相反数,与另一根用截距式算其与x轴交点.结果是关于m的方程.所以是定值
看了 椭圆C:x^2/a^2+y^...的网友还看了以下:
设A是n阶矩阵A^2=E,证明r(A+E)+r(A-E)=n,的一步证明过程不懂由A^2=E,得A 2020-05-14 …
正交矩阵是否能证明对称,有一题如下 对于任意正交矩阵A,AAT=ATA=E,证明|E-A^2|=0 2020-05-15 …
大家看看我这个矩阵的证明哪里有问题已知A,B为n阶方阵,且B=B^2,A=B+E,证明A可逆,并求 2020-06-09 …
是不是对于所有n×n的矩阵A,都可以有A^k的幂运算呢,那怎么保证A^(k-1)·A=A·A^(k 2020-06-10 …
线性代数中为何|AA*|=||A|E|?设A为n阶矩阵(n³2),A*为A的伴随阵,证明.证明当R 2020-07-09 …
牛顿冷却模型,实验验证θ=θ0+(θ1-θ0)e—kt(e—kt代表e的负kt次方,θ0与θ1中的 2020-07-16 …
证明:设二维随机变量(X,Y)服从二维正态分布N(0,0,1,1,p),则X-Y服从正态分布N(0, 2020-10-31 …
求证e^i(4π/n)+e^i(8π/n)+...+e^i4(n-1)π/n+e^i(4nπ/n)= 2020-11-01 …
你好请教两个考研数学问题~设b大于a大于e证明存在一个t属于(a,b),使得be^a-ae^b=(1 2020-11-26 …
设f(x)在(0,1)连续,在(0,1)内可导,证明:存在x属于(0,1),使得f(x)+fx的导数 2021-01-13 …