早教吧作业答案频道 -->数学-->
如图,AB是⊙O的直径,且点C为⊙O上的一点,∠BAC=30°,M是OA上一点,过M作AB的垂线交AC于点N,交BC的延长线于点E,直线CF交EN于点F,且∠ECF=∠E.(1)证明:CF是⊙O的切线;(2)设⊙O的半
题目详情
如图,AB是⊙O的直径,且点C为⊙O上的一点,∠BAC=30°,M是OA上一点,过M作AB的垂线交AC于点N,交BC的延长线于点E,直线CF交EN于点F,且∠ECF=∠E.

(1)证明:CF是⊙O的切线;
(2)设⊙O的半径为1,且AC=CE,求MO的长.

(1)证明:CF是⊙O的切线;
(2)设⊙O的半径为1,且AC=CE,求MO的长.
▼优质解答
答案和解析
(1)证明:如图,连接OC,
∵AB是⊙O的直径,
∴∠ACB=90°,
∵∠BAC=30°,
∴∠ABC=60°;
在Rt△EMB中,∵∠E+∠MBE=90°,
∴∠E=30°;
∵∠E=∠ECF,
∴∠ECF=30°,
∴∠ECF+∠OCB=90°;
∵∠ECF+∠OCB+∠OCF=180°,
∴∠OCF=90°,
∴CF为⊙O的切线;
(2)在Rt△ACB中,∠A=30°,∠ACB=90°,
∴AC=ABcos30°=
,BC=ABsin30°=1;
∵AC=CE,
∴BE=BC+CE=1+
,在Rt△EMB中,∠E=30°,∠BME=90°,
∴MB=BEsin30°=
,
∴MO=MB-OB=
.

∵AB是⊙O的直径,
∴∠ACB=90°,
∵∠BAC=30°,
∴∠ABC=60°;
在Rt△EMB中,∵∠E+∠MBE=90°,
∴∠E=30°;
∵∠E=∠ECF,
∴∠ECF=30°,
∴∠ECF+∠OCB=90°;
∵∠ECF+∠OCB+∠OCF=180°,
∴∠OCF=90°,
∴CF为⊙O的切线;
(2)在Rt△ACB中,∠A=30°,∠ACB=90°,
∴AC=ABcos30°=
3 |
∵AC=CE,
∴BE=BC+CE=1+
3 |
∴MB=BEsin30°=
1+
| ||
2 |
∴MO=MB-OB=
−1+
| ||
2 |
看了 如图,AB是⊙O的直径,且点...的网友还看了以下:
如图,AB、CD是圆O的直径,点E在AB延长线上,PE垂直AE,BE=EF=2,FE的延长线交CD 2020-04-05 …
平行四边形ABCD的对角线AC,BD相交于点O.点E是CD的中点,三角形ABD的周长为16cm,平 2020-04-26 …
如图5-1-5,直线AB与直线CD相较于点O,点E为∠AOD内一点,且∠AOE=98°,∠BOD= 2020-05-13 …
初二几何正方形正方形ABCD的对角线交于O点,E是OA上任意一点,CF垂直于BE于F,CF交DB于 2020-05-13 …
如图,AB是圆O的直径,CD切圆O于点C,AD交于圆O点E,当AC满足什么条件时,AD垂直于CD, 2020-05-15 …
如图,AB为圆O的直径,点E为弧AC的中点,CD⊥AB于点D,BE分别交CDCA于点HF,证明CH 2020-06-05 …
如图,AB是圆O的直径,弦CD垂直平分半径OB,垂直为点E.求证:三角形ACD是正三角形 2020-06-27 …
如图,在三角形ABC中,角C等于2角B,D是BC上的一点,且AD垂直AB,点E是BD的中点,连接E 2020-06-27 …
弧AEC是半径a的半圆,AC为直径,点E为弧AC的中点,点B和点C为线段AD的三...弧AEC是半 2020-07-04 …
如图所示,AB为圆O的直径,点E在AB的延长线上,点C为圆O上一点,过点A作AD垂直于CE,垂足为D 2020-11-26 …