早教吧作业答案频道 -->数学-->
数列{An}中,A1=8,A4=2,且满足An+2-2*An+1+An=0(n属于自然数)1)求{An}的通项公式2)Sn=绝对值A1+绝对值A2+……+绝对值An,求Sn3)设Bn=1/[n(12-An)],(n为自然数),Tn=B1+B2+……Bn,问是否存在最大整数m,是
题目详情
数列{An}中,A1=8,A4=2,且满足An+2-2*An+1+An=0(n属于自然数)
1)求{An}的通项公式
2)Sn=绝对值A1+绝对值A2+……+绝对值An,求Sn
3)设Bn=1/[n(12-An)],(n为自然数),Tn=B1+B2+……Bn,问是否存在最大整数m,是对于任意的n属于自然数都有Tn>m/32;若存在,求m.
1)求{An}的通项公式
2)Sn=绝对值A1+绝对值A2+……+绝对值An,求Sn
3)设Bn=1/[n(12-An)],(n为自然数),Tn=B1+B2+……Bn,问是否存在最大整数m,是对于任意的n属于自然数都有Tn>m/32;若存在,求m.
▼优质解答
答案和解析
1、A(n+2)-A(n+1)=A(n+1)-A(n)=...=A4-A3=A3-A2=A2-A1=(A4-A1)/3
这是一个等差数列
d=(A4-A1)/3=-2
首项为8
所以An=8-2(n-1)=10-2n
2、当n=5时,An=0,
所以从n=6开始,|An|是一个首项为2,公差为2的等差数列,则此时的通项公式为:|An|=2n-10
则:Sn=8+6+4+2+0+[2+...+(2n-10)]
=20+[(n-5)(2+2n-10)]/2
=20+(n-5)(n-4)
3、Bn=1/[n(12-An)]=1/[n(12-10+2n)]=1/[2n(n+1)]=(1/2)[(1/n)-1/(n+1)]
Tn=B1+B2+…Bn
=(1/2){(1-1/2)+(1/2-1/3)+...+[(1/n)-(1/n+1)]}
=(1/2)[1-1/(n+1)]
所以当n=1时取最小值是1/4
当n趋近于无穷大时取最大值是1/2
当m/32m/32
此时,m
这是一个等差数列
d=(A4-A1)/3=-2
首项为8
所以An=8-2(n-1)=10-2n
2、当n=5时,An=0,
所以从n=6开始,|An|是一个首项为2,公差为2的等差数列,则此时的通项公式为:|An|=2n-10
则:Sn=8+6+4+2+0+[2+...+(2n-10)]
=20+[(n-5)(2+2n-10)]/2
=20+(n-5)(n-4)
3、Bn=1/[n(12-An)]=1/[n(12-10+2n)]=1/[2n(n+1)]=(1/2)[(1/n)-1/(n+1)]
Tn=B1+B2+…Bn
=(1/2){(1-1/2)+(1/2-1/3)+...+[(1/n)-(1/n+1)]}
=(1/2)[1-1/(n+1)]
所以当n=1时取最小值是1/4
当n趋近于无穷大时取最大值是1/2
当m/32m/32
此时,m
看了 数列{An}中,A1=8,A...的网友还看了以下:
一些简单等差数列设|an|是公差为2的等差数列,若a1+a4+a7+……+a97=50,则a3+a6 2020-03-31 …
设数列(an)的前n项和为Sn=2n^2,(bn)为等比数列.设数列(an)的前n项和为Sn=2n 2020-04-06 …
已知等比数列{an}中,a1=1/3,公比q=1/3.求Sn为{an}的前n项和,证明:Sn=1- 2020-04-06 …
己知等比数列{an}中,a3=16,公比q=1/2.(1)求数列{an}的通项公式(2)设数列{己 2020-05-13 …
1、设数列{an}的前n项和Sn=2an-2^n.(1)求a3,a4;(2)证明:{an+1-2a 2020-05-13 …
已知数列an中,a1=2,an+1=4an-3n+1,求证数列{an-n}为等比数列设{an}的前 2020-05-15 …
已知数列an满足a1=1╱4an=an-1(-1)n╱an-1-2设bn=1╱an2,求数列bn的 2020-05-17 …
设Sn为等差数列{an}的前n项和,已知S3=a7,a8-2a3=3.(1)求an;(2)设b设S 2020-07-09 …
已知函数f(x)=x/x+1,若数列{an}满足a1=1,an+1=f(an),设数列{cn}满足 2020-07-29 …
设bn=log3|an|,求数列bn已知数列an的前n项和为Sn,且4Sn=an+1,设bn=lo 2020-07-30 …