早教吧作业答案频道 -->数学-->
任意x∈R,2^x+x^2>1为假命题,证明.试证明任意x∈R,2^x+x^2>1为假命题.
题目详情
任意x∈R,2^x+x^2>1为假命题,证明.
试证明任意x∈R,2^x+x^2>1为假命题.
试证明任意x∈R,2^x+x^2>1为假命题.
▼优质解答
答案和解析
证明假命题只需找个反例 x=0时显然 命题 不成立
有疑问可追问
有疑问可追问
看了 任意x∈R,2^x+x^2>...的网友还看了以下:
1.若x的1/2次方+x的-1/2次方=3求(x的3/2次方+x的-3/2次方-3)/(x的2次方 2020-05-04 …
a,b为正数,a≠b,x,y∈(0,+∞),求证a2/x+b2/y>=(a+b)2/x+y1.求证 2020-06-12 …
已知a,b为正数,a≠b,x,y∈(0,+∞),求证a2/x+b2/y>=(a+b)2/x+y已知 2020-06-12 …
高数证明题设函数f(x)在[1/2,2]上可微,且满足∫(1,2)f(x)/x^2dx=4f(1/ 2020-06-14 …
已知函数f(x)=1/a-1/x(a>0,x>0).(1)求证:f(x)在(0,正无穷)上是单调递 2020-06-14 …
高数证明题1设函数f(x)在[1.2]上连续,在{1,2}内可导,且f(2)=0,F(x)=(x- 2020-07-22 …
1.求:怎么证明2^x是增函数?2.怎么样证明2^x+(1/2)^x是在正实数范围内是增函数f(x 2020-08-01 …
请帮我做下列题目:1计算:(a+b)2(a-b)2(a2-ab+b2)(a2+ab+b2)2注:2为 2020-11-07 …
证明:定义在数轴上的任意函数可以分解为奇函数与偶函数之和书本上证明:f(x)=1/2(f(x)+f( 2020-12-04 …
高中数学抽象函数已知定义在(-1,1)上的函数f(x)满足f(1/2)=1,且对任意x,y∈(-1, 2020-12-08 …