早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设x,y均为正数,且x>y,求证:2x+1x2-2xy+y2≥2y+3.

题目详情
设x,y均为正数,且x>y,求证:2x+
1
x2-2xy+y2
≥2y+3.
▼优质解答
答案和解析
证明:由题设x>y,可得x-y>0;
∵2x+
1
x2-2xy+y2
-2y=2(x-y)+
1
(x-y)2
=(x-y)+(x-y)+
1
(x-y)2

又(x-y)+(x-y)+
1
(x-y)2
≥3
3(x-y)2
1
(x-y)2
=3,当x-y=1时取“=“;
∴2x+
1
x2-2xy+y2
-2y≥3,即2x+
1
x2-2xy+y2
≥2y+3.