早教吧作业答案频道 -->数学-->
圆O:X^2+Y^2=1,圆C:(X-2)^2+(Y-4)^2=1,由圆外一点P(a,b)引两圆切线PA,PB,切点分别为A,B,满足PA=PB1求实数a,b满足的等量关系2求切线PA的最小值.3是否存在以P为圆心的圆,使它与圆O相内切并且与圆C相外切?
题目详情
圆O:X^2+Y^2=1,圆C:(X-2)^2+(Y-4)^2=1,由圆外一点P(a,b)引两圆切线PA,PB,切点分别为A,B,满足PA=PB
1求实数a,b满足的等量关系
2求切线PA的最小值.
3是否存在以P为圆心的圆,使它与圆O相内切并且与圆C相外切?
1求实数a,b满足的等量关系
2求切线PA的最小值.
3是否存在以P为圆心的圆,使它与圆O相内切并且与圆C相外切?
▼优质解答
答案和解析
1.切线垂直于圆心到切点的那条半径.
所以,可以由勾股定理和两点间距离公式求得等量关系:
(a-2)^2+(b-4)^2=PA^2+1^2=a^2+b^2
即a+2b=5
2.由1得,a=5-2b
PA^2=a^2+b^2-1
把a=5-2b代入,得:PA^2=5(b-2)^2+4
所以当b=2,PAmin=2
3.设圆心坐标为(X,Y),半径为R
内切是,d1=R-1(d1为P到O的圆心距)
外切是,d2=R+1(d2为P到C的圆心距)
d1,d2可以用两点间距离公式算出
d2-d1=2.【1】
由双曲线的定义可知,P的轨迹(即【1】),是以(0,0)、(2,4)为焦点、且实轴长为2的双曲线.
既然有轨迹,所以存在这样的P点.
所以,可以由勾股定理和两点间距离公式求得等量关系:
(a-2)^2+(b-4)^2=PA^2+1^2=a^2+b^2
即a+2b=5
2.由1得,a=5-2b
PA^2=a^2+b^2-1
把a=5-2b代入,得:PA^2=5(b-2)^2+4
所以当b=2,PAmin=2
3.设圆心坐标为(X,Y),半径为R
内切是,d1=R-1(d1为P到O的圆心距)
外切是,d2=R+1(d2为P到C的圆心距)
d1,d2可以用两点间距离公式算出
d2-d1=2.【1】
由双曲线的定义可知,P的轨迹(即【1】),是以(0,0)、(2,4)为焦点、且实轴长为2的双曲线.
既然有轨迹,所以存在这样的P点.
看了 圆O:X^2+Y^2=1,圆...的网友还看了以下:
观察下列分解因式的过程.x^2+2ax-3a^2=x^2+2ax+a^2-a^2-3a^2(先加上a 2020-03-31 …
设a=(√5-1)/2,求(a^5+a^4-2a^3-a^2-a+2)/a^3-a∵2a=√5-1 2020-04-05 …
三阶实对称矩阵,R(A)=2,A^2+2A=0,求特征值.都得到a(a+2)=0.为什么得到a=0 2020-04-13 …
已知abc是三角形abc的三边长,且满足a^2*c^2-b^2*c^2=a^4-b^4判断三角形a 2020-06-08 …
已知a^2-3a+1=0,求下列各式的值(1)a+1/a;(2)a^2+1/a^2(3)a^2+1 2020-06-12 …
若关于x的方程x+2/x=c+2/c的解是x1=c,x2=2/c,则关于x的方程x+2/(x-1) 2020-06-27 …
观察下列分解因式的过程.x^2+2ax-3a^2=x^2+2ax+a^2-a^2-3a^2(先加上 2020-07-31 …
基本不等式的使用问题a+b=1,求(a+2)^2+(b+2)^2的最小值.在这道题里,如果使用基本 2020-08-03 …
做出下面的题1.已知有理数a,b满足a^2+4b^2-a+4b+5/4=0;那么,-ab的相反数是多 2020-11-01 …
初二数学题(1)(-a^2b/c^3)^2×(bc/-a^2)^3÷(b/ac)^4(2)(x+y/ 2020-11-01 …