早教吧作业答案频道 -->数学-->
圆O:X^2+Y^2=1,圆C:(X-2)^2+(Y-4)^2=1,由圆外一点P(a,b)引两圆切线PA,PB,切点分别为A,B,满足PA=PB1求实数a,b满足的等量关系2求切线PA的最小值.3是否存在以P为圆心的圆,使它与圆O相内切并且与圆C相外切?
题目详情
圆O:X^2+Y^2=1,圆C:(X-2)^2+(Y-4)^2=1,由圆外一点P(a,b)引两圆切线PA,PB,切点分别为A,B,满足PA=PB
1求实数a,b满足的等量关系
2求切线PA的最小值.
3是否存在以P为圆心的圆,使它与圆O相内切并且与圆C相外切?
1求实数a,b满足的等量关系
2求切线PA的最小值.
3是否存在以P为圆心的圆,使它与圆O相内切并且与圆C相外切?
▼优质解答
答案和解析
1.切线垂直于圆心到切点的那条半径.
所以,可以由勾股定理和两点间距离公式求得等量关系:
(a-2)^2+(b-4)^2=PA^2+1^2=a^2+b^2
即a+2b=5
2.由1得,a=5-2b
PA^2=a^2+b^2-1
把a=5-2b代入,得:PA^2=5(b-2)^2+4
所以当b=2,PAmin=2
3.设圆心坐标为(X,Y),半径为R
内切是,d1=R-1(d1为P到O的圆心距)
外切是,d2=R+1(d2为P到C的圆心距)
d1,d2可以用两点间距离公式算出
d2-d1=2.【1】
由双曲线的定义可知,P的轨迹(即【1】),是以(0,0)、(2,4)为焦点、且实轴长为2的双曲线.
既然有轨迹,所以存在这样的P点.
所以,可以由勾股定理和两点间距离公式求得等量关系:
(a-2)^2+(b-4)^2=PA^2+1^2=a^2+b^2
即a+2b=5
2.由1得,a=5-2b
PA^2=a^2+b^2-1
把a=5-2b代入,得:PA^2=5(b-2)^2+4
所以当b=2,PAmin=2
3.设圆心坐标为(X,Y),半径为R
内切是,d1=R-1(d1为P到O的圆心距)
外切是,d2=R+1(d2为P到C的圆心距)
d1,d2可以用两点间距离公式算出
d2-d1=2.【1】
由双曲线的定义可知,P的轨迹(即【1】),是以(0,0)、(2,4)为焦点、且实轴长为2的双曲线.
既然有轨迹,所以存在这样的P点.
看了 圆O:X^2+Y^2=1,圆...的网友还看了以下:
设两两相互独立的三个事件A,B和C满足条件:ABC=Φ,P(A)=P(B)=P(C)<0.5,且已 2020-04-06 …
计算题(P/A,10%,4)=3.1699(P/F,10%,1)=0.9091(P/A,10%,5 2020-04-07 …
概率加法公式加法公式,对于任意两事件A,B,有P(A并B)=P(A)+P(B)-P(AB)成立,假 2020-05-16 …
设A,B为任意两个事件且A⊂B,P(B)>0,则下列选项必然成立的是()A.P(A)<P(A|B) 2020-06-18 …
设两两相互独立的事件A,B,C满足条件,ABC=空集,P(A)=P(B)=P(C),且P(A并B并 2020-06-22 …
两人同猜一个谜语,设甲能猜出的概率是P(A),乙能猜出的概率为P(B),那么两人中至少有一人能猜出 2020-07-09 …
掷2颗均匀的骰子,令:A={第一个骰子出现4点},B={两颗骰子出现的点数之和为7}(1)试求P(A 2020-11-25 …
已知abc两两相互独立,求证P(a交b交c)=p(a)p(b)p(c)已知ab相互独立,求证a已知a 2020-12-01 …
下列四个命题:①对立事件一定是互斥事件;②若A,B为两个事件,则P(A∪B)=P(A)+P(B);③ 2020-12-01 …
求证若B⊂A,则P(A-B)=P(A)-P(B)且P(A)≥P(B)……谢谢……给出一种解法,但是需 2020-12-01 …