早教吧作业答案频道 -->数学-->
高中圆锥曲线.已知A(x1,y1),B(x2,y2)是抛物线C:y^2=4x上的任意两点,点P(1,2)是抛物线C上定点,已知A(x1,y1),B(x2,y2)是抛物线C:y^2=4x上的任意两点,点P(1,2)是抛物线C上定点,直线PA和PB的斜率分别为k1,k2,
题目详情
高中圆锥曲线.已知A(x1,y1),B(x2,y2)是抛物线C:y^2=4x上的任意两点,点P(1,2)是抛物线C上定点,
已知A(x1,y1),B(x2,y2)是抛物线C:y^2=4x上的任意两点,点P(1,2)是抛物线C上定点,直线PA和PB的斜率分别为k1,k2,若K1K2=2求证:直线AB过定点.
记得有一种解法是把K1、K2用X1、X2表示出来,有两种表示方式.然后k1k2可以写成两个方程,联立,带入直线AB的方程求到定点.但是我忘了怎样用两种办法k1、k2,
已知A(x1,y1),B(x2,y2)是抛物线C:y^2=4x上的任意两点,点P(1,2)是抛物线C上定点,直线PA和PB的斜率分别为k1,k2,若K1K2=2求证:直线AB过定点.
记得有一种解法是把K1、K2用X1、X2表示出来,有两种表示方式.然后k1k2可以写成两个方程,联立,带入直线AB的方程求到定点.但是我忘了怎样用两种办法k1、k2,
▼优质解答
答案和解析
设直线PA的斜率为1/k1(这么设是为了计算方便)
直线PB的斜率为1/k2
根据题意k1k2=1/2
A(x1,y1),B(x2,y2)
那么PA:x-1=k1(y-2)
与抛物线C:y^2=4x联立
得到y^2-4k1y+8k1-4=0
根据韦达定理得到
y1+2=4k1
所以y1=4k1-2
x1=(2k1-1)^2
所以A((2k1-1)^2,4k1-2)
把k1换成k2
得到了B((2k2-1)^2,4k2-2)
所以KAB=1/(k1+k2-1)
写出AB的方程y-(4k1-2)=[x-(2k1-1)^2]/(k1+k2-1)
把k1k2=1/2带入,并整理后得到
(k1+k2-1)y=x-2k1-2k2
所以(k1+k2)(y+2)=x+y
只要令y+2=0
x+y=0
解得x=2, y=-2
所以恒过点(2,-2)
直线PB的斜率为1/k2
根据题意k1k2=1/2
A(x1,y1),B(x2,y2)
那么PA:x-1=k1(y-2)
与抛物线C:y^2=4x联立
得到y^2-4k1y+8k1-4=0
根据韦达定理得到
y1+2=4k1
所以y1=4k1-2
x1=(2k1-1)^2
所以A((2k1-1)^2,4k1-2)
把k1换成k2
得到了B((2k2-1)^2,4k2-2)
所以KAB=1/(k1+k2-1)
写出AB的方程y-(4k1-2)=[x-(2k1-1)^2]/(k1+k2-1)
把k1k2=1/2带入,并整理后得到
(k1+k2-1)y=x-2k1-2k2
所以(k1+k2)(y+2)=x+y
只要令y+2=0
x+y=0
解得x=2, y=-2
所以恒过点(2,-2)
看了 高中圆锥曲线.已知A(x1,...的网友还看了以下:
抛物线Y^2=2px(p>0)上一点M到焦点的距离为a(a大于等于2p),求点M到Y轴的最短距离是 2020-05-13 …
设A与B互为对立事件,且P(A)>0,P(B)>0,则下列各式中错误的是( )A.P(A)=1-P 2020-05-16 …
(2014•浦东新区三模)若当P(m,n)为圆x2+(y-1)2=1上任意一点时,等式m+n+c= 2020-06-05 …
重新排列字母,写出单词1.s,a,p,e,c,2.r,o,e,t,c,k,3.d,c,o,o,t, 2020-06-06 …
一只袋内装有m个白球,n-m个黑球,连续不放回地从袋中取球,直到取出黑球为止,设此时取出了ξ个白球 2020-06-16 …
设P(A)>0,则下面结论正确的:A、P(B|A)P(A)≥P(A)‐P(B)B、P(B|A)P( 2020-07-18 …
指针问题设intx[]={1,2,3,4,5,6},*p=x;则数值为3的表达式是(B)。(A)p 2020-07-30 …
C语言问题,求助!(共5题)拜托各位大神1.若有下列定义,则对a数组元素地址的正确引用是:()int 2020-12-31 …
概率计算公式,有N多题设ABC是任意三事件,且AB属于C,则P(C)=A.等于P(A-B)B.不大于 2020-12-31 …
递回关系式的运算公式(数列)以下是推导一个公式"a=a+r(1-p^n)/(1-p)"的过程a=p* 2021-01-13 …