早教吧作业答案频道 -->其他-->
假设p(x)为F[x]中一个次数>=1的多项式,如果对于F[x]中任意多项式f(x)都有p(x)|f(x)或(p(x),f(x))=1.证明:p(x)是数域F上的不可约多项式.
题目详情
假设p(x)为F[x]中一个次数>=1的多项式,如果对于F[x]中任意多项式f(x)都有p(x)|f(x)或(p(x),f(x))=1.
证明:p(x)是数域F上的不可约多项式.
证明:p(x)是数域F上的不可约多项式.
▼优质解答
答案和解析
设q(x)∈F[x]是p(x)的因式.
由条件,要么成立(p(x),q(x)) = 1,要么成立p(x) | q(x).
若(p(x),q(x)) = 1,由q(x)是p(x)和q(x)的公因式,有q(x) | 1,q(x)为常数.
若p(x) | q(x),由q(x) | p(x),二者相差非零常数倍(相伴).
因此p(x)在F[x]中只有平凡因式(相伴于1或p(x)本身),即p(x)不可约.
由条件,要么成立(p(x),q(x)) = 1,要么成立p(x) | q(x).
若(p(x),q(x)) = 1,由q(x)是p(x)和q(x)的公因式,有q(x) | 1,q(x)为常数.
若p(x) | q(x),由q(x) | p(x),二者相差非零常数倍(相伴).
因此p(x)在F[x]中只有平凡因式(相伴于1或p(x)本身),即p(x)不可约.
看了 假设p(x)为F[x]中一个...的网友还看了以下:
设不等试f(x)≥0的解集是1,2,g(x)≥0的解集是空集,则不等式f(x)/g(x设不等试f( 2020-04-27 …
关于多项式与因式分解的难题如果一个多项式f(x)具有如下性质:f(x)是f(x^2)的一个因式,则 2020-05-16 …
在奇函数的定义式-f(x)=f(-x)中如果定义域中的x是多项式,比如f(x-1)那么负号带进去是 2020-05-21 …
我国南宋时期的数学家秦九韶在他的著作《数书九章》中提出了计算多项式f(x)=anxn+an-1xn 2020-06-29 …
设F(x)对一切x,y属于(0,正无穷)均有F(xy)=F(x)+F(y)且X>1时横有F(x)> 2020-07-17 …
已知函数f(x)=ex-(2a+e)x,a∈R.(Ⅰ)若对任意x≥1,不等式f(x)≥1恒成立,求 2020-07-21 …
f(x÷y)=f(x)-f(y)f(6)=1证f(36)=2与接不等式f(x+3)-f(1÷x)< 2020-07-29 …
已知函数f(x)的定义域是(0,+∞),当x>1时,f(x)>0,且f(x·y)=f(x)+f(y) 2020-11-07 …
选修4-5:不等式选讲设函数f(x)=|x+l|-|x-2|.(Ⅰ)求不等式f(x)≥2的解集;(Ⅱ 2020-12-08 …
函数和不等式的问题已知函数f(x)在R上是增函数,a,b属于R1.求证:如果a+b>=0,那么f(a 2020-12-23 …