早教吧作业答案频道 -->数学-->
设数列{an}的前n项和为Sn=2an-2^n 求:a1,a4 证明:{a(n+1)-2an}是等比数列 求{an}通项公式
题目详情
设数列{an}的前n项和为Sn=2an-2^n 求:a1,a4 证明:{a(n+1)-2an}是等比数列 求{an}通项公式
▼优质解答
答案和解析
1.
因为数列{an}的前n项和Sn=2an-2^n.(1)
所以S(n+1)=2a(n+1)-2^(n+1).(2)
(2)-(1)得a(n+1)=2a(n+1)-2an-2^n
所以a(n+1)-2an=2^n
所以(a(n+2)-2a(n+1))/(a(n+1)-2an)=2^(n+1)/2^n=2
所以数列{a(n+1)-2an}是等比数列
2.
因为a(n+1)-2an=2^n
两边同时除以2^(n+1)得a(n+1)/2^(n+1)-an/2^n=1/2
所以数列{an/2^n}是个等差数列,公差为d=1/2
因为Sn=2an-2^n
所以S1=2a1-2^1 即a1=2a1-2^1 故a1=2
所以数列{an/2^n}的首项是a1/2^1=2/2=1
所以an/2^n=a1/2^1+(n-1)d=1+(n-1)/2=(n+1)/2
所以an=(n+1)*2^(n-1)
3.
a1=2 a4=(4+1)*2^(4-1)=5*8=40
因为数列{an}的前n项和Sn=2an-2^n.(1)
所以S(n+1)=2a(n+1)-2^(n+1).(2)
(2)-(1)得a(n+1)=2a(n+1)-2an-2^n
所以a(n+1)-2an=2^n
所以(a(n+2)-2a(n+1))/(a(n+1)-2an)=2^(n+1)/2^n=2
所以数列{a(n+1)-2an}是等比数列
2.
因为a(n+1)-2an=2^n
两边同时除以2^(n+1)得a(n+1)/2^(n+1)-an/2^n=1/2
所以数列{an/2^n}是个等差数列,公差为d=1/2
因为Sn=2an-2^n
所以S1=2a1-2^1 即a1=2a1-2^1 故a1=2
所以数列{an/2^n}的首项是a1/2^1=2/2=1
所以an/2^n=a1/2^1+(n-1)d=1+(n-1)/2=(n+1)/2
所以an=(n+1)*2^(n-1)
3.
a1=2 a4=(4+1)*2^(4-1)=5*8=40
看了 设数列{an}的前n项和为S...的网友还看了以下:
几道高二不等式证明题.1.a,b属于正数,a不等于b.求证a/根号b+b/根号a>根号a+根号b2. 2020-03-30 …
证明不等式是什么时候要论证等号的成立比如说“若a,b,c为正实数,且a*b+b*c+c*a=0,用 2020-06-03 …
设函数f(x)=3x²+a/(x的3次方)(x>0)求证数a的取值范围,使对于任意x∈(0,+∞) 2020-06-10 …
把有理数分成以下两类A={a│a∈Q,a≤0或a>0但a20且b2>2}这是有理数系的一个分划,我 2020-06-12 …
证明:存在无穷多个正数a,使得n^4(n=1,2,3……)都是合数初等数论证明题.想了很久,都不知 2020-06-14 …
【数论:奇数与偶数】设a,b,c为整数,证明:(a+b+c)(a+b-c)(b+c-a)(c+a- 2020-06-27 …
1.设abcd是四个整数,且使m=(ab+cd)^2-1/4(a^2+b^2-c^2-d^2)^2 2020-07-09 …
设a,b及√a+√b都是整数,证明√a及√b都是整数.我知道这个怎么证明的,但证明中我有一步搞不懂 2020-07-30 …
用反证法证明:已知a、b、c∈(0,1),求证:(1-a)*b;(1-b)*c;(1-c)*a不能 2020-08-01 …
a是x2+x+1=0方程的根求证a不是实数反证法a是x2+x+1=0方程的根求证a不是实数用反证法 2020-08-01 …