早教吧作业答案频道 -->数学-->
正数列{an}和{bn}满足对任意自然数n,an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列(1)证明:数列{√bn}成等差数列(2)若a1=1,b1=2,a2=3,求数列{an},{bn}的通项公式(3)在(2)的前提下求{1/an}的通项
题目详情
正数列{an}和{bn}满足对任意自然数n,an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列
(1)证明:数列{√bn}成等差数列
(2)若a1=1,b1=2,a2=3,求数列{an},{bn}的通项公式
(3)在(2)的前提下求{1/an}的通项公式
(1)证明:数列{√bn}成等差数列
(2)若a1=1,b1=2,a2=3,求数列{an},{bn}的通项公式
(3)在(2)的前提下求{1/an}的通项公式
▼优质解答
答案和解析
a(n+1)=√[bn*b(n+1)]
2bn=an+an+1
2bn=√[bn*b(n-1)]+√[bn*b(n+1)]
2√bn=√b(n-1)+√b(n+1)
所以数列{√bn}为等差数列
2.
√b1=√2
(a2)^2=b1*b2
b2=(a2)^2/b1=4.5
√b2=√(9/2)
d=√(9/2)-√2
√bn=(n-1)(√(9/2)-√2)+√2
得bn=(n+1)^2/2
an=√bn*b(n+1)=(n+1)(n+2)/2
3.
1/an=1/[(n+1)(n+2)/2]=2/(n+1)(n+2)
2bn=an+an+1
2bn=√[bn*b(n-1)]+√[bn*b(n+1)]
2√bn=√b(n-1)+√b(n+1)
所以数列{√bn}为等差数列
2.
√b1=√2
(a2)^2=b1*b2
b2=(a2)^2/b1=4.5
√b2=√(9/2)
d=√(9/2)-√2
√bn=(n-1)(√(9/2)-√2)+√2
得bn=(n+1)^2/2
an=√bn*b(n+1)=(n+1)(n+2)/2
3.
1/an=1/[(n+1)(n+2)/2]=2/(n+1)(n+2)
看了 正数列{an}和{bn}满足...的网友还看了以下:
(1).已知a,b都是正数,且a≠b,求证:2ab/a+b<(ab的开方)(2).已知a,b都是正数 2020-03-30 …
(1)已知abc属于正实数,求证(a^2+a+1)(b^2+b+1)(c^2+c+1)>=27ab 2020-04-27 …
1.已知a,b,c是正有理数.求证:a^3/(a^2+ab+b^2)+b^3/(b^2+bc+c^ 2020-06-12 …
已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)与X轴的正方向交于A,0为坐标原点,以OA 2020-06-29 …
把(a-b)-2b+2a分解因式甲同学的解=A²-2AB+B²-2B+2A=A²+2A-2AB+B 2020-07-15 …
条件等式求值~帮忙做一下...1.已知a+b+c=1,a^2+b^2+c^2=2,a^3+b^3+ 2020-07-24 …
如图所示,实心正方体A、B的边长分别是0.1米,0.2米,密度分别为ρA=0.2×103千克/米3 2020-08-01 …
1.已知a-b=5,ab=-9/4,求(1)(a+b)^2的值;(2)a^2+b^2的值.2.已知a 2020-11-05 …
设a、b、c为正数,且a^2+b^2+c^2=3,证明:1/(1+2ab)+1/(1+2bc)+1/ 2020-11-06 …
①若a:b=2:3,b:c=1:2,且a+b+c=22,则a=(),b=().②周长相等的正方①若a 2020-11-29 …