早教吧作业答案频道 -->数学-->
正数列{an}和{bn}满足对任意自然数n,an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列(1)证明:数列{√bn}成等差数列(2)若a1=1,b1=2,a2=3,求数列{an},{bn}的通项公式(3)在(2)的前提下求{1/an}的通项
题目详情
正数列{an}和{bn}满足对任意自然数n,an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列
(1)证明:数列{√bn}成等差数列
(2)若a1=1,b1=2,a2=3,求数列{an},{bn}的通项公式
(3)在(2)的前提下求{1/an}的通项公式
(1)证明:数列{√bn}成等差数列
(2)若a1=1,b1=2,a2=3,求数列{an},{bn}的通项公式
(3)在(2)的前提下求{1/an}的通项公式
▼优质解答
答案和解析
a(n+1)=√[bn*b(n+1)]
2bn=an+an+1
2bn=√[bn*b(n-1)]+√[bn*b(n+1)]
2√bn=√b(n-1)+√b(n+1)
所以数列{√bn}为等差数列
2.
√b1=√2
(a2)^2=b1*b2
b2=(a2)^2/b1=4.5
√b2=√(9/2)
d=√(9/2)-√2
√bn=(n-1)(√(9/2)-√2)+√2
得bn=(n+1)^2/2
an=√bn*b(n+1)=(n+1)(n+2)/2
3.
1/an=1/[(n+1)(n+2)/2]=2/(n+1)(n+2)
2bn=an+an+1
2bn=√[bn*b(n-1)]+√[bn*b(n+1)]
2√bn=√b(n-1)+√b(n+1)
所以数列{√bn}为等差数列
2.
√b1=√2
(a2)^2=b1*b2
b2=(a2)^2/b1=4.5
√b2=√(9/2)
d=√(9/2)-√2
√bn=(n-1)(√(9/2)-√2)+√2
得bn=(n+1)^2/2
an=√bn*b(n+1)=(n+1)(n+2)/2
3.
1/an=1/[(n+1)(n+2)/2]=2/(n+1)(n+2)
看了 正数列{an}和{bn}满足...的网友还看了以下:
正数列{an}和{bn}满足对任意自然数n,an,bn,an+1成等差数列,bn,an+1,bn+ 2020-04-06 …
在数列{an},{bn}中,a1=2,b1=4,……证明:1/(a1+b1)+1/(a2+b2)+ 2020-05-15 …
数列{an},{bn}中,a1=2,b1=4,且an,bn,an+1成等差数列,bn,an+1,b 2020-05-15 …
已知数列an,bn中,a1=b1=1,且当n≥2时,an-nan-1=0,bn=2bn-1-已知数 2020-05-15 …
、比-0.5大-2的数1.列式并求值比-0.5大-2的数、-1又2分之1的相反数与-三分之二的绝对 2020-06-03 …
数列{an},{bn}中,a1=3,b1=0,当n≥2时an=[2a(n-1)+b(n-1)]/3 2020-07-09 …
已知数列{an}是首项为2,公比为2的等比数列,数列{bn}满足bn=anlog2an.(1.)求 2020-07-28 …
求通项式已知bn+1=bn^2+bn数列{bn}已知b1=1满足bn+1=bn^2+bn(注:n为 2020-07-29 …
求一数列题目正数数列{An}和{Bn}满足:对任意的正整数n,An,Bn,An+1成等差数列,Bn, 2020-10-31 …
由函数y=f(x)确定数列{an},an=f(n),若函数y=f(x)的反函数y=f-1(x)能确定 2021-02-04 …