早教吧作业答案频道 -->数学-->
如图已知抛物线的方程为x^2=2py过点a(0,1)的直线已知抛物线的方程为x2=2py(p>0),过点A(0,-1)作直线l与抛物线相交于P,Q两点,点B的坐标为(0,1),连接BP,BQ,设QB,BP与x轴分别交于点M,N,如果QB的斜率于PB
题目详情
如图 已知抛物线的方程为x^2=2py 过点a(0,1)的直线
已知抛物线的方程为x2=2py(p>0),过点A(0,-1)作直线l与抛物线相交于P,Q两点,点B的坐标为(0,1),连接BP,BQ,设QB,BP与x轴分别交于点M,N,如果QB的斜率于PB的斜率的乘积为-4,则∠MBN的大小为?
已知抛物线的方程为x2=2py(p>0),过点A(0,-1)作直线l与抛物线相交于P,Q两点,点B的坐标为(0,1),连接BP,BQ,设QB,BP与x轴分别交于点M,N,如果QB的斜率于PB的斜率的乘积为-4,则∠MBN的大小为?
▼优质解答
答案和解析
这种题目高考不会出,奥林匹克也不会考,国家级或者国际级可能会考,不必钻这种题目哦.
以下是奥林匹克高手的解法,方法正确,请检验计算结果.
PQ:y=kx-1
x^2=2py=2p*(kx-1)
x^2-2pkx+2p=0
xP+xQ=2pk,xP*xQ=2p
k(BQ)*k(BP)=-4
[(yQ-1)/xQ]*[(yP-1)/xP]=-4
(kxQ-2)*(kxP-2)+4xP*xQ=0
k^2*xP*xQ-2k*(xP+xQ)+4+4xP*xQ=0
(4+k^2)*xP*xQ-2k*(xP+xQ)+4=0
(4+k^2)*2p-2k*2pk+4=0
k^2=(2+4p)/p
xP-xQ=2√(p^2*k^2-2p)=2√[p^2*(2+4p)/p-2p]=2√(4p^2)=4p(p>0)
k(BQ)-k(BP)=(kxQ-2)/xQ-(kxP-2)/xP=-2(xP-xQ)/(2p)=-4
1+k(BQ)*k(BP)=1+[(kxQ-2)/xQ]*[(kxP-2)/xP]=-3
[k(BQ)-k(BP)]/[1+k(BQ)*k(BP)]=-4/(-3)=4/3
∠MBN=arctg(4/3)
以下是奥林匹克高手的解法,方法正确,请检验计算结果.
PQ:y=kx-1
x^2=2py=2p*(kx-1)
x^2-2pkx+2p=0
xP+xQ=2pk,xP*xQ=2p
k(BQ)*k(BP)=-4
[(yQ-1)/xQ]*[(yP-1)/xP]=-4
(kxQ-2)*(kxP-2)+4xP*xQ=0
k^2*xP*xQ-2k*(xP+xQ)+4+4xP*xQ=0
(4+k^2)*xP*xQ-2k*(xP+xQ)+4=0
(4+k^2)*2p-2k*2pk+4=0
k^2=(2+4p)/p
xP-xQ=2√(p^2*k^2-2p)=2√[p^2*(2+4p)/p-2p]=2√(4p^2)=4p(p>0)
k(BQ)-k(BP)=(kxQ-2)/xQ-(kxP-2)/xP=-2(xP-xQ)/(2p)=-4
1+k(BQ)*k(BP)=1+[(kxQ-2)/xQ]*[(kxP-2)/xP]=-3
[k(BQ)-k(BP)]/[1+k(BQ)*k(BP)]=-4/(-3)=4/3
∠MBN=arctg(4/3)
看了 如图已知抛物线的方程为x^2...的网友还看了以下:
点P在直线l,m外.(1)过P作直线与直线l,m相交,可得到多少同位角,内错角,同旁内角?(2)思 2020-07-23 …
直线MN与直线EF相交与点O,直线MN与直线EF相交与点O,角EON等于60度.若点A在直线EF上 2020-07-25 …
已知L经过抛物线的焦点F、且与抛物线交与p;q直线l经过抛物线y2=4px(p>0)的焦点F,且与 2020-07-26 …
设直线l1:y=2x与直线l2:x+y=3交于P点.(1)当直线m过P点,且与直线l0:x-2y= 2020-07-30 …
已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心 2020-07-31 …
已知抛物线y2=2px(p>0),过定点T(p,0)作两条互相垂直的直线l1,l2,若l1与抛物线 2020-08-01 …
已知抛物线y2=2px(p>0),过定点T(p,0)作两条互相垂直的直线l1,l2,若l1与抛物线 2020-08-01 …
求满足下列条件的直线的一般式方程1)直线过点P(2,3)且与l:2x+3y-5=0平行2)直线过点 2020-08-01 …
对于下述命题p,写出“¬p”形式的命题,并判断“p”与“¬p”的真假:(1)p:91∈(A∩B)(其 2020-12-13 …
直线AB与双曲线Y=X/K相交于P,Q其中点A(-5,0),点P(1,M)∠BAO=45°如图:直线 2021-02-04 …