早教吧作业答案频道 -->数学-->
如图已知抛物线的方程为x^2=2py过点a(0,1)的直线已知抛物线的方程为x2=2py(p>0),过点A(0,-1)作直线l与抛物线相交于P,Q两点,点B的坐标为(0,1),连接BP,BQ,设QB,BP与x轴分别交于点M,N,如果QB的斜率于PB
题目详情
如图 已知抛物线的方程为x^2=2py 过点a(0,1)的直线
已知抛物线的方程为x2=2py(p>0),过点A(0,-1)作直线l与抛物线相交于P,Q两点,点B的坐标为(0,1),连接BP,BQ,设QB,BP与x轴分别交于点M,N,如果QB的斜率于PB的斜率的乘积为-4,则∠MBN的大小为?
已知抛物线的方程为x2=2py(p>0),过点A(0,-1)作直线l与抛物线相交于P,Q两点,点B的坐标为(0,1),连接BP,BQ,设QB,BP与x轴分别交于点M,N,如果QB的斜率于PB的斜率的乘积为-4,则∠MBN的大小为?
▼优质解答
答案和解析
这种题目高考不会出,奥林匹克也不会考,国家级或者国际级可能会考,不必钻这种题目哦.
以下是奥林匹克高手的解法,方法正确,请检验计算结果.
PQ:y=kx-1
x^2=2py=2p*(kx-1)
x^2-2pkx+2p=0
xP+xQ=2pk,xP*xQ=2p
k(BQ)*k(BP)=-4
[(yQ-1)/xQ]*[(yP-1)/xP]=-4
(kxQ-2)*(kxP-2)+4xP*xQ=0
k^2*xP*xQ-2k*(xP+xQ)+4+4xP*xQ=0
(4+k^2)*xP*xQ-2k*(xP+xQ)+4=0
(4+k^2)*2p-2k*2pk+4=0
k^2=(2+4p)/p
xP-xQ=2√(p^2*k^2-2p)=2√[p^2*(2+4p)/p-2p]=2√(4p^2)=4p(p>0)
k(BQ)-k(BP)=(kxQ-2)/xQ-(kxP-2)/xP=-2(xP-xQ)/(2p)=-4
1+k(BQ)*k(BP)=1+[(kxQ-2)/xQ]*[(kxP-2)/xP]=-3
[k(BQ)-k(BP)]/[1+k(BQ)*k(BP)]=-4/(-3)=4/3
∠MBN=arctg(4/3)
以下是奥林匹克高手的解法,方法正确,请检验计算结果.
PQ:y=kx-1
x^2=2py=2p*(kx-1)
x^2-2pkx+2p=0
xP+xQ=2pk,xP*xQ=2p
k(BQ)*k(BP)=-4
[(yQ-1)/xQ]*[(yP-1)/xP]=-4
(kxQ-2)*(kxP-2)+4xP*xQ=0
k^2*xP*xQ-2k*(xP+xQ)+4+4xP*xQ=0
(4+k^2)*xP*xQ-2k*(xP+xQ)+4=0
(4+k^2)*2p-2k*2pk+4=0
k^2=(2+4p)/p
xP-xQ=2√(p^2*k^2-2p)=2√[p^2*(2+4p)/p-2p]=2√(4p^2)=4p(p>0)
k(BQ)-k(BP)=(kxQ-2)/xQ-(kxP-2)/xP=-2(xP-xQ)/(2p)=-4
1+k(BQ)*k(BP)=1+[(kxQ-2)/xQ]*[(kxP-2)/xP]=-3
[k(BQ)-k(BP)]/[1+k(BQ)*k(BP)]=-4/(-3)=4/3
∠MBN=arctg(4/3)
看了 如图已知抛物线的方程为x^2...的网友还看了以下:
函数、反比列函数的解析式在平面直角坐标系xOy中,只限y=-x饶点O顺时针旋转90度得到直线L,直线 2020-03-31 …
1.经过椭圆X²/2+Y²=1的左焦点F1作倾斜角为60度的直线L,直线L与椭圆相交于A,B两点, 2020-05-16 …
这是一道比较难的数学题,求一个完整答案已知一次函数y=√3+m(0大于m小于等于1)的图像为直线l 2020-06-03 …
给出以下五个命题:①若直线l∥直线a,a⊂β,则l∥β;②如果平面α⊥平面γ,平面β⊥平面γ,α∩ 2020-08-01 …
过双曲线X²/a²-Y²/b²=1(a>0,b>0)的右焦点F2作斜率为1的直线L,直线L与双曲线 2020-08-01 …
初三数学在平面直角坐标系中,直线Y=√3X+2√3分别与X轴,Y轴交于A,B两点.如果直线AB绕A 2020-08-02 …
已知直线l:4x+3y+12=0,与x、y轴分别交于A、B两点,O为坐标原点.(1)求△ABO的面积 2020-11-04 …
已知一次函数y=3+m(O<m≤1)的图象为直线l,直线l绕原点O旋转180°后得直线l',△ABC 2020-11-10 …
数学人才相救1.过定点M(-2,4)作圆C:(X-2)平方+(X-1)平方=25的切线L,直线N:A 2020-12-26 …
在平面直角坐标系x0y中直线y=-x绕点O顺时针旋转90°得到直线l,直线l与反比例函数y=x分之k 2021-02-04 …