早教吧作业答案频道 -->数学-->
如图已知抛物线的方程为x^2=2py过点a(0,1)的直线已知抛物线的方程为x2=2py(p>0),过点A(0,-1)作直线l与抛物线相交于P,Q两点,点B的坐标为(0,1),连接BP,BQ,设QB,BP与x轴分别交于点M,N,如果QB的斜率于PB
题目详情
如图 已知抛物线的方程为x^2=2py 过点a(0,1)的直线
已知抛物线的方程为x2=2py(p>0),过点A(0,-1)作直线l与抛物线相交于P,Q两点,点B的坐标为(0,1),连接BP,BQ,设QB,BP与x轴分别交于点M,N,如果QB的斜率于PB的斜率的乘积为-4,则∠MBN的大小为?
已知抛物线的方程为x2=2py(p>0),过点A(0,-1)作直线l与抛物线相交于P,Q两点,点B的坐标为(0,1),连接BP,BQ,设QB,BP与x轴分别交于点M,N,如果QB的斜率于PB的斜率的乘积为-4,则∠MBN的大小为?
▼优质解答
答案和解析
这种题目高考不会出,奥林匹克也不会考,国家级或者国际级可能会考,不必钻这种题目哦.
以下是奥林匹克高手的解法,方法正确,请检验计算结果.
PQ:y=kx-1
x^2=2py=2p*(kx-1)
x^2-2pkx+2p=0
xP+xQ=2pk,xP*xQ=2p
k(BQ)*k(BP)=-4
[(yQ-1)/xQ]*[(yP-1)/xP]=-4
(kxQ-2)*(kxP-2)+4xP*xQ=0
k^2*xP*xQ-2k*(xP+xQ)+4+4xP*xQ=0
(4+k^2)*xP*xQ-2k*(xP+xQ)+4=0
(4+k^2)*2p-2k*2pk+4=0
k^2=(2+4p)/p
xP-xQ=2√(p^2*k^2-2p)=2√[p^2*(2+4p)/p-2p]=2√(4p^2)=4p(p>0)
k(BQ)-k(BP)=(kxQ-2)/xQ-(kxP-2)/xP=-2(xP-xQ)/(2p)=-4
1+k(BQ)*k(BP)=1+[(kxQ-2)/xQ]*[(kxP-2)/xP]=-3
[k(BQ)-k(BP)]/[1+k(BQ)*k(BP)]=-4/(-3)=4/3
∠MBN=arctg(4/3)
以下是奥林匹克高手的解法,方法正确,请检验计算结果.
PQ:y=kx-1
x^2=2py=2p*(kx-1)
x^2-2pkx+2p=0
xP+xQ=2pk,xP*xQ=2p
k(BQ)*k(BP)=-4
[(yQ-1)/xQ]*[(yP-1)/xP]=-4
(kxQ-2)*(kxP-2)+4xP*xQ=0
k^2*xP*xQ-2k*(xP+xQ)+4+4xP*xQ=0
(4+k^2)*xP*xQ-2k*(xP+xQ)+4=0
(4+k^2)*2p-2k*2pk+4=0
k^2=(2+4p)/p
xP-xQ=2√(p^2*k^2-2p)=2√[p^2*(2+4p)/p-2p]=2√(4p^2)=4p(p>0)
k(BQ)-k(BP)=(kxQ-2)/xQ-(kxP-2)/xP=-2(xP-xQ)/(2p)=-4
1+k(BQ)*k(BP)=1+[(kxQ-2)/xQ]*[(kxP-2)/xP]=-3
[k(BQ)-k(BP)]/[1+k(BQ)*k(BP)]=-4/(-3)=4/3
∠MBN=arctg(4/3)
看了 如图已知抛物线的方程为x^2...的网友还看了以下:
如图,在平面直角坐标系中,点P(1,4)、Q(m,n)在函数y=kx(x>0)的图象上,当m>1时 2020-06-13 …
初三数学直线y=-2x+8分别与x轴,y轴相交于点a,b.o点为原点.a点坐标为(4,0)若p为y 2020-06-14 …
如图,直线y=kx+8分别与x轴、y轴相交于A、B两点,O为坐标原点,A点的坐标为(4,0).(1 2020-06-29 …
1、如图,已知反比例函数y=1/x的图像上有一点P,过点P分别作x轴和y轴的垂线,垂足分别为A、B 2020-07-15 …
如图,在平面直角坐标系中,点P(1,4)、Q(mn)在函数的图象上,当时,过点P分别作x轴、y轴的 2020-07-29 …
如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过P分别作 2020-07-29 …
点P(3,a)是函数Y=-2/X上的一点,过点P分别作X和Y轴的垂线,两条垂线与坐标轴围成的矩形面 2020-08-02 …
如图,一次函数y=-3/4x+3的图像与x轴,y轴分别交与A和B,再将△AOB沿直线CD对折,使点A 2020-11-01 …
如图,点P是反比例函数(x>0)的图象上的一个动点,且PB⊥x轴于B,S△OPB=3.求:(1)求出 2020-11-01 …
(2010•江北区模拟)如图,直线与x轴、y轴交于A、B两点,且OA=OB=1,点P是反比例函数y= 2020-11-08 …