早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2011•大兴区二模)已知三角形ABC,AD为BC边中线,P为BC上一动点,过点P作AD的平行线,交直线AB或延长线于点Q,交CA或延长线于点R.(1)当点P在BD上运动时,过点Q作BC的平行线交AD于E点,

题目详情
(2011•大兴区二模)已知三角形ABC,AD为BC边中线,P为BC上一动点,过点P作AD的平行线,交直线AB或延长线于点Q,交CA或延长线于点R.
(1)当点P在BD上运动时,过点Q作BC的平行线交AD于E点,交AC于F点,求证:QE=EF;
(2)当点P在BC上运动时,求证:PQ+PR为定值.
▼优质解答
答案和解析
(1)证明:∵QF∥BC,
∴△AQE∽△ABD,△AEF∽△ADC.(1分)
QE
BD
AE
AD
EF
DC

∵BD=DC,
∴QE=EF.(3分)

(2)当点P与点B(或点C)重合时,AD为△B(P)RC(或△C(P)BQ)的中位线,
∴PQ+PR=2AD.
当点P在BD上(不与点B重合)运动时,由(1)证明可知,AE为△RQF的中位线,
∴RQ=2AE.
∵QF∥BC,PQ∥AD,
∴四边形PQED为平行四边形.
∴PQ=DE,
∴PQ+PR=2DE+QR=2DE+2AE=2AD.(5分)
同理可证,当点P在CD上(不与点C重合)运动时,
PQ+PR=2AD.
∴P在BC上运动时,PQ+PR为定值,
即PQ+PR=2AD.(7分)