早教吧作业答案频道 -->其他-->
设f(x)的原函数F(x)>0,且f(x)F(x)=1/(e^x+e^-x),F(0)=√(π/2),求证f(x)=e^x/(1+e^2x)√(2arctane^x)rt
题目详情
设f(x)的原函数F(x)>0,且f(x)F(x)=1/(e^x+e^-x),F(0)=√(π/2),求证f(x)=e^x/(1+e^2x)√(2arctane^x)
rt
rt
▼优质解答
答案和解析
f(x)F(x)=1/(e^x+e^-x)
∫ f(x)F(x) dx = ∫ dx/[e^x+e^(-x)]
let
y = e^x
dy = e^xdx
∫ dx/[e^x+e^(-x)]
= ∫dy/(y^2+1)
= arctany + C1
= arctan(e^x) + C1
∫ f(x)F(x) dx = ∫ dx/[e^x+e^(-x)]
[F(x)]^2/2 =arctan(e^x) + C1
put x=0
π/4 = π/4 + C1
C1=0
[F(x)]^2/2 =arctan(e^x)
F(x) = √[ 2arctan(e^x)]
f(x) =F'(x)
=(1/[2√[ 2arctan(e^x)] ] ) .[2e^x/(1+e^(2x)]
= e^x/[(1+e^2x)√(2arctan(e^x))]
∫ f(x)F(x) dx = ∫ dx/[e^x+e^(-x)]
let
y = e^x
dy = e^xdx
∫ dx/[e^x+e^(-x)]
= ∫dy/(y^2+1)
= arctany + C1
= arctan(e^x) + C1
∫ f(x)F(x) dx = ∫ dx/[e^x+e^(-x)]
[F(x)]^2/2 =arctan(e^x) + C1
put x=0
π/4 = π/4 + C1
C1=0
[F(x)]^2/2 =arctan(e^x)
F(x) = √[ 2arctan(e^x)]
f(x) =F'(x)
=(1/[2√[ 2arctan(e^x)] ] ) .[2e^x/(1+e^(2x)]
= e^x/[(1+e^2x)√(2arctan(e^x))]
看了 设f(x)的原函数F(x)>...的网友还看了以下:
设函数f(x)在x=a的某个邻域内有定义,则f(x)在x=a处可导的一个充分条件是?请写出分析过程! 2020-03-30 …
已知函数f(x)=2acosx+bsinxcosx,f(0)=2,f(派/3)=1/2+根号3/2 2020-05-15 …
y'|x=-1 导数 极限 斜率 什么的∵lim x→0 f(1)−f(1−2x) 2x =lim 2020-05-17 …
f(x)是定义在R上的函数,且对任意实数x,y都有f(x+y)=f(x)+f(y)-1成立,当f( 2020-06-02 …
已知f(x)=log2[(x+2)],且f(0),f(2),f(6)成等差数列若a,b,c是互不相 2020-06-13 …
f(x)在[0,1]连续,在(0,1)可导.f(0)=0,f(1)=1.证明存在两点a,b属于(f 2020-06-18 …
函数f(X)对任意a,b都有f(a+b)=f(a)+f(b)-1,且当X〉0时有f(x)〉1.求证 2020-08-01 …
函数f(0)+f(1)+f(2)=3f(3)=1证明f'(x)=0设函数f(x)在[0,3]上连续 2020-08-02 …
设函数f(x)对任意函数x,y,有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,求f 2020-12-08 …
已知函数f(x)=x^2+x+c,若f(0)>0,f(p)<0,则必有?1.f(p+1)>02.f( 2020-12-08 …